Иррациональные неравенства 10. Иррациональные неравенства. Примеры решения задач
В данном уроке мы рассмотрим решение иррациональных неравенств, приведем различные примеры.
Тема: Уравнения и неравенства. Системы уравнений и неравенств
Урок: Иррациональные неравенства
При решении иррациональных неравенств довольно часто необходимо возводить обе части неравенства в некоторую степень, это довольно ответственная операция. Напомним особенности.
Обе части неравенства можно возвести в квадрат, если обе они неотрицательны, только тогда мы получаем из верного неравенства верное неравенство.
Обе части неравенства можно возвести куб в любом случае, если исходное неравенство было верным, то при возведении в куб мы получим верное неравенство.
Рассмотрим неравенство вида:
Подкоренное выражение должно быть неотрицательным. Функция может принимать любые значения, необходимо рассмотреть два случая.
В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) больше отрицательного выражения, значит, неравенство выполняется всегда.
Итак, имеем следующую схему решения:
В первой системе мы не защищаем отдельно подкоренное выражение, т. к. при выполнении второго неравенства системы подкоренное выражение автоматически должно быть положительно.
Пример 1 - решить неравенство:
Согласно схеме, переходим к эквивалентной совокупности двух систем неравенств:
Проиллюстрируем:
Рис. 1 - иллюстрация решения примера 1
Как мы видим, при избавлении от иррациональности, например, при возведении в квадрат, получаем совокупность систем. Иногда эту сложную конструкцию можно упростить. В полученной совокупности мы имеем право упростить первую систему и получить эквивалентную совокупность:
В качестве самостоятельного упражнения необходимо доказать эквивалентность данных совокупностей.
Рассмотрим неравенство вида:
Аналогично предыдущему неравенству, рассматриваем два случая:
В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) меньше отрицательного выражения, значит, неравенство противоречиво. Вторую систему рассматривать не нужно.
Имеем эквивалентную систему:
Иногда иррациональное неравенство можно решить графическим методом. Данный способ применим, когда соответствующие графики можно достаточно легко построить и найти их точки пересечения.
Пример 2 - решить неравенства графически:
а)
б)
Первое неравенство мы уже решали и знаем ответ.
Чтобы решить неравенства графически, нужно построить график функции, стоящей в левой части, и график функции, стоящей в правой части.
Рис. 2. Графики функций и
Для построения графика функции необходимо преобразовать параболу в параболу (зеркально отобразить относительно оси у), полученную кривую сместить на 7 единиц вправо. График подтверждает, что данная функция монотонно убывает на своей области определения.
График функции - это прямая, ее легко построить. Точка пересечения с осью у - (0;-1).
Первая функция монотонно убывает, вторая монотонно возрастает. Если уравнение имеет корень, то он единственный, по графику легко его угадать: .
Когда значение аргумента меньше корня, парабола находится выше прямой. Когда значение аргумента находится в пределах от трех до семи, прямая проходит выше параболы.
Имеем ответ:
Эффективным методом решения иррациональных неравенств является метод интервалов.
Пример 3 - решить неравенства методом интервалов:
а)
б)
согласно методу интервалов, необходимо временно отойти от неравенства. Для этого перенести в заданном неравенстве все в левую часть (получить справа ноль) и ввести функцию, равную левой части:
теперь необходимо изучить полученную функцию.
ОДЗ:
Данное уравнение мы уже решали графически, поэтому не останавливаемся на определении корня.
Теперь необходимо выделить интервалы знакопостоянства и определить знак функции на каждом интервале:
Рис. 3. Интервалы знакопостоянства к примеру 3
Напомним, что для определения знаков на интервале необходимо взять пробную точку и подставить ее в функцию, полученный знак функция будет сохранять на всем интервале.
Проверим значение в граничной точке:
Очевиден ответ:
Рассмотрим следующий тип неравенств:
Сначала запишем ОДЗ:
Корни существуют, они неотрицательны, обе части можем возвести в квадрат. Получаем:
Получили эквивалентную систему:
Полученную систему можно упростить. При выполнении второго и третьего неравенств первое истинно автоматически. Имеем::
Пример 4 - решить неравенство:
Действуем по схеме - получаем эквивалентную систему.
Урок «Решение иррациональных неравенств»,
10 класс,
Цель : познакомить учащихся с иррациональными неравенствами и методами их решения.
Тип урока : изучение нового материала.
Оборудование: учебное пособие «Алгебра и начала анализа. 10- 11 класс», Ш.А. Алимов, справочный материал по алгебре, презентация по данной теме.
План урока:
Этап урока
Цель этапа
Время
Сообщение темы урока; постановка цели урока; сообщение этапов урока.
2 мин
Устная работа
Пропедевтика определения иррационального уравнения.
4 мин
Изучение нового материала
Познакомить с иррациональными неравенствами и со способами их решения
20 мин
Решение задач
Формировать умение решать иррациональные неравенства
14 мин
Итог урока
Повторить определение иррационального неравенства и способы его решения.
3 мин
Домашнее задание
Инструктаж по домашнему заданию.
2 мин
Ход урока
Организационный момент.
Устная работа (Слайд 4,5)
Какие уравнения называются иррациональными?
Какие из следующих уравнений являются иррациональными?
Найти область определения
Объясните, почему эти уравнения не имеют решения на множестве действительных чисел
Древнегреческий учёный – исследователь, который впервые доказал существование иррациональных чисел (Слайд 6)
Кто впервые ввёл современное изображение корня (Слайд 7)
Изучение нового материала.
В тетради со справочным материалом запишите определение иррациональных неравенств: (Слайд 8) Неравенства, содержащие неизвестное под знаком корня, называются иррациональными.
Иррациональные неравенства – это довольно сложный раздел школьного курса математики. Решение иррациональных неравенств осложняется тем обстоятельством, что здесь, как правило, исключена возможность проверки, поэтому надо стараться делать все преобразования равносильными.
Чтобы избежать ошибки при решении иррациональных неравенств, следует рассматривать только те значения переменной, при которых все входящие в неравенства функции определены, т.е. найти ООН, а затем обоснованно осуществлять равносильный переход на всей ООН или её частях.
Основным методом решения иррациональных неравенств является сведение неравенства к равносильной системе или совокупности систем рациональных неравенств. В тетради со справочным материалом запишем основные методы решения иррациональных неравенств по аналогии с методами решения иррациональных уравнений. (Слайд 9)
При решении иррациональных неравенств следует запомнить правило: (Слайд 10)1. при возведении обеих частей неравенства в нечётную степень всегда получается неравенство, равносильное данному неравенству; 2. если обе части неравенства возводят в чётную степень, то получится неравенство, равносильное исходному только в том случае, если обе части исходного неравенства неотрицательны.
Рассмотрим решение иррациональных неравенств, в которых правая часть является числом. (Слайд 11)
Возведём в квадрат обе части неравенства, но в квадрат мы можем возводить только неотрицательные числа. Значит, найдём ООН, т.е. множество таких значений х, при которых имеют смысл обе части неравенства. Правая часть неравенства определена при всех допустимых значениях х, а левая при
х-4 0. Данное неравенство равносильно системе неравенств:
Ответ.
Правая часть отрицательна, а левая часть неотрицательна при всех значениях х, при которых она определена. Это означает, что левая часть больше правой при всех значениях х, удовлетворяющих условию х 3.
Класс: 10
Цели урока.
Обучающий аспект.
1. Закрепить знания и умения решения неравенств.
2. Научиться решать иррациональные неравенства по составленному на уроке алгоритму.
Развивающий аспект.
1. Развивать грамотную математическую речь при ответе с места и у доски.
2. Развивать мышление посредством:
Анализа и синтеза при работе над выводом алгоритма
Постановки и решения проблемы (логические умозаключения при возникновении проблемной ситуации и ее разрешении)
3. Развивать умение проводить аналогии при решении иррациональных неравенств.
Воспитывающий аспект.
1. Воспитывать соблюдение норм поведения в коллективе, уважение к мнению окружающих при совместной деятельности в группах.
Тип урока. Урок изучения новых знаний.
Этапы урока.
- Подготовка к активной учебно-познавательной деятельности.
- Усвоение нового материала.
- Первичная проверка понимания.
- Домашнее задание.
- Подведение итогов урока.
Учащиеся знают и умеют: умеют решать иррациональные уравнения, рациональные неравенства.
Учащиеся не знают: способ решения иррациональных неравенств.
Этапы урока, образовательные задачи | Содержание учебного материала |
Подготовка к активной
учебно-познавательной деятельности.
Обеспечение мотивации познавательной деятельности учащихся. Актуализация опорных знаний и умений. Создание условий для самостоятельной формулировки учащимися темы и целей урока. |
Выполните устно: 1. Найди ошибку: у(х)= 3. Решите неравенство у(х) , используя рисунок. 4. Решите уравнение: Повторение. Решите уравнение:(один учащийся у доски дает ответ с полным комментарием решения, все остальные решают в тетради) Решите устно неравенство Чем будем заниматься на уроке, дети должны сформулировать сами. Решение иррациональных неравенств. Неравенство под №5 решить устно сложно. Сегодня на уроке мы научимся решать иррациональные неравенства вида , создав при этом алгоритм их решения. Тема урока записывается в тетрадь “Решение иррациональных неравенств”. |
Усвоение нового
материала.
Организация деятельности учащихся по выводу алгоритма решения уравнений, приводимых к квадратным, путем введения вспомогательной переменной. Восприятие, осмысление, первичное запоминание изучаемого материала. |
Учащиеся делятся на две группы. Одна выводит алгоритм решения неравенства вида , а другая вида Представитель каждой группы обоснует свой вывод, остальные слушают, делают комментарии Используя выведенный алгоритм решения, учащимся предлагается решить следующие неравенства самостоятельно, разделившись на пары, с последующей проверкой. Решить неравенства: |
Первичная проверка
понимания.
Установление правильности и осознанности усвоения алгоритма |
Далее у доски с полным комментарием решают уравнения: |
Подведение итогов урока | Что нового узнали на урока? Повторить выведенные алгоритмы решений иррациональных неравенств |
приложение №3
Урок общего разбора темы с использованием опорных схем
«Иррациональные неравенства»
Перед началом урока учащиеся рассаживаются в соответствии с тремя уровнями подготовки на определённые ряды. Отметим, что навыки по рассматриваемой теме не относятся к обязательным требованиям к подготовке учащихся, поэтому, у меня её изучают только более подготовленные учащиеся (1 и 2 группа).
Цель урока. Разобрать способы решения иррациональных неравенств среднего и повышенного уровня сложности, разработать опорные схемы.
1 этап урока - организационный (1мин.)
Учитель сообщает учащимся тему урока, цель и поясняет назначение раздаточного материала, который находится на партах.
2 этап урока (5мин.)
Устная работа на повторение по решению простейших задач по теме «Степень с рациональным показателем»
Учитель предлагает учащимся по очереди отвечать на вопросы, комментируя свой ответ с ссылкой на соответствующий теоретический факт.
Повторение рекомендуется проводить на каждом уроке в 10-11-х классах. Учащимся раздаются листы с заданиями для устной работы, составленные на основе краевых диагностических контрольных работ следующего содержания.
Степень с рациональным показателем
Упростить: 1) 12m 4 /3m 8
2) 6с 3/7 + 4 (с 1/7 ) 3
3) (32х 2 ) 1/5 · х 3/5
4) 2 4,6а · 2 -1,6а
5) 2х 0,2 · х -1,2
6) 4х 3/5 · х 1/10
7) (25х 4 ) 0,5
8) 2х 4/5 · 3х 1/5
9) (3х 2/5 ) 2 + 2х 4/5
10) 3х 1/2 · х 3/2
Вычислить: 11) 4 3,2m · 4 -1,2m , при m =1/4
12) 6 -5,6а · 6 3,6а , при а = 1/2
13) 5 · 27 2/3 - 16 1/4
14) 3 4,4с · 3 -6,4с , при с =1/2
15) 3х 2/5 · х 3/5 , при х = 2
3 этап урока - изучение новой темы (20мин.), лекция
Учитель предлагает 3 группе учащихся приступить к работе над повторением с карточками - консультантами по теме «Простейшие тригонометрические уравнения» (т.к. изучаемый материал повышенного уровня сложности и к обязательному не относится). Учащиеся 3 группы - это, как правила учащиеся со слабой математической подготовкой, педагогически запущенные школьники. После выполнения задания происходит обмен карточками внутри группы. Более подготовленные учащиеся приступают к разбору новой темы.
Перед разбором способов решений иррациональных неравенств учащимся необходимо напомнить основные теоретические факты, на основе которых будут строится опорные схемы для равносильных переходов. В зависимости от уровня подготовки учащихся это могут быть либо устные ответы на вопросы учителя, либо совместная работа учителя и учащихся, но в любом случае на уроке должно прозвучать следующее.
Определение 1. Неравенства, имеющие одно и то же множество решений, называют равносильными.
При решении неравенств обычно данное неравенство преобразуется в ему равносильное.
Например, неравенство (х - 3)/(х 2 + 1) равносильны, т.к. имеют одно и то же множество решений: х . Неравенства 2х/(х - 1) > 1 и 2х > х - 1 не равносильны, т.к. решениями первого являются решения х 1, а решениями второго - числа х > -1.
Определение 2. Область определения неравенства - это множество таких значений х, при которых имеют смысл обе части неравенства.
Мотивация. Неравенства сами по себе представляют интерес для изучения, т.к. именно с их помощью на символическом языке записываются важнейшие задачи познания реальной действительности. Часто неравенство служит важным вспомогательным средством, позволяющим доказать или опровергнуть существование каких-либо объектов, оценить их количество провести классификацию. Поэтому, с неравенствами приходится сталкиваться не менее часто, чем с уравнениями.
Определение. Неравенство, содержащие переменную под знаком корня, называется иррациональным.
Пример 1. √(5 - х)
Какова область определения неравенства?
При каком условии при возведении в квадрат обеих частей получится равносильное неравенство?
5 - х ≥ 0
√(5 - х) 5 - х -11
Пример 2. √10 + х - х 2 ≥ 2 10 + х - х 2 ≥ 0 10 + х - х 2 ≥ 4
10 + х - х 2 ≥ 4
т.к. каждое решение второго неравенства системы является решением первого неравенства.
Пример 3. Решить неравенства
А) √3х - 4
Б) √2х 2 + 5х - 3 ≤ 0 2х 2 + 5х - 3 = 0
Разберём три типичных примера, из которых будет видно, как при решении неравенств делать равносильные переходы, когда напрашивающееся преобразование равносильным не является.
Пример 1. √1 - 4х
Хотелось бы, конечно, возвести обе части в квадрат, чтобы получить квадратное неравенство. При этом мы можем получить не равносильное неравенство. Если рассматривать только те х для которых обе части не отрицательны (левая неотрицательно заведомо), то возведение в квадрат будет всё таки возможным. Но что же делать с теми х, для которых правая часть отрицательна? А ничего не делать, поскольку ни одно их этих х решением неравенства не будет: ведь для всякого решения неравенства правая часть больше левой, являющейся неотрицательным числом, и, стало быть, сама не отрицательна. Итак, следствием нашего неравенства будет такая система
1 - 4х 2
Х + 11 ≥ 0.
Тем не менее, эта система не обязана быть равносильной исходному неравенству. Областью определения полученной системы является вся числовая прямая, в то время как исходное неравенство определено лишь для тех х, для которых 1 - 4х ≥ 0. Значит если мы хотим, чтобы наша система была равносильна неравенству надо приписать это условие:
1 - 4х 2
Х + 11 ≥ 0
1 - 4х ≥ 0
Ответ: (- 6; ¼]
Предлагается сильному ученику провести рассуждение в общем виде, получится вот, что
√f(х) f(х) 2
G(х) ≥ 0
F(х) ≥ 0.
Если бы в исходном неравенстве стоял знак ≤ вместо 2 .
Пример 2. √х > х - 2
Здесь опять можно возвести в квадрат для тех х, для которых выполнено условие х - 2 ≥ 0. Однако теперь уже нельзя отбросить те х, для которых правая часть отрицательна: ведь в этом случае правая часть будет меньше заведомо не отрицательной левой, так что все такие х будут решениями неравенств. Впрочем, не все, а те которые входят в область определения неравенства, т.е. для которых х ≥ 0. Какие случаи следует рассмотреть?
1 случай: если х - 2 ≥ 0, то из нашего неравенства следует система
х > (х - 2) 2
Х - 2 ≥ 0
2 случай: если х - 2
х ≥ 0
Х - 2
При разборе случаев возникает составное условие под названием «совокупность». Получим равносильную неравенству совокупность двух систем
х > (х - 2) 2
Х - 2 ≥ 0
Х ≥ 0
Х - 2
Сильному учащемуся предлагается провести рассуждение в общем, виде, то получится вот, что:
√f(х) > g(х) f(х) > (g(х)) 2
G(х) ≥ 0
F(х) ≥ 0
G(х)
Если бы в исходном неравенстве стоял знак ≥ вместо >, то в качестве первого неравенства этой системы надо было взять f(х) ≥ (g(х)) 2 .
Пример 3. √х 2 - 1 > √х + 5.
Вопросы:
Какие значения принимают выражения стоящие в левой и правой части?
Можно ли возвести в квадрат?
Какова область определения неравенств?
Получим х 2 - 1 > х + 5
Х + 5 ≥ 0
Х 2 - 1 ≥ 0
Какое условие лишнее?
Таким образом, получим, что данное неравенство равносильно системе
Х 2 - 1 > х + 5
Х + 5 ≥ 0
Сильному учащемуся предлагается провести рассуждение в общем виде, то получится вот, что:
√f(х) > √g(х) f(х) > g(х)
G(х) ≥ 0.
Подумайте, что изменится, если вместо > в исходном неравенстве будет стоять знак ≥, ≤ или <.>
На доске вывешиваются 3 схемы решения иррациональных неравенства, ещё раз обсуждается принцип их построения.
4 этап - закрепление знаний (5мин.)
Учащимся 2 группы предлагается указать, какой системе или их совокупности равносильно неравенство № 167 (Алгебра и начала анализа 10-11 кл. М, Просвещение, 2005, Ш.А.Алимов)
Двум наиболее подготовленным учащимся из этой группы предлагается решить на доске неравенства: № 1. √х 2 - 1 >1
№ 2. √25 - х 2
Учащиеся 1 группы получают аналогичное задание, но более высокого уровня сложности № 170 (Алгебра и начала анализа 10-11 кл. М, Просвещение, 2005, Ш.А.Алимов)
одному наиболее подготовленному учащемуся из этой группы предлагается решить на доске неравенство: √4х - х 2
При этом всем учащимся разрешается пользоваться конспектом.
В это время учитель работает с учащимися 3 группы: отвечает на их вопросы при необходимости помогает; и контролирует решение задач на доске.
По истечению времени каждой группе выдаётся для проверки лист ответов (можно показать ответы на экране, используя мультимедийную систему).
5 этап урока - обсуждение решений задач, представленных на доске (7мин.)
Учащиеся, выполнявшие задачи у доски, комментируют свои решения, а остальные вносят при необходимости коррективы и выполняют записи в тетрадях.
6 этап урока - подведение итогов урока, комментарии по домашнему заданию (2мин.)
3 группа обмен карточками внутри группы.
2 группа № 168 (3, 4)
1 группа № 169 (5), № 170 (6)
Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.
Сбор и использование персональной информации
Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.
От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.
Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.
Какую персональную информацию мы собираем:
- Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.
Как мы используем вашу персональную информацию:
- Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
- Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
- Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
- Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.
Раскрытие информации третьим лицам
Мы не раскрываем полученную от Вас информацию третьим лицам.
Исключения:
- В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
- В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.
Защита персональной информации
Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.
Соблюдение вашей конфиденциальности на уровне компании
Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.