Все о тюнинге авто

Как обозначается среднее арифметическое буквой. Среднее арифметическое значение. Некоторые проблемы применения среднего

) и выборочное среднее (выборки).

Энциклопедичный YouTube

  • 1 / 5

    Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (, произносится «x с чертой»).

    Для обозначения среднего арифметического всей совокупности используется греческая буква μ . Для случайной величины , для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

    На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную , имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

    Обе эти величины вычисляются одним и тем же способом:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

    Примеры

    • Для трёх чисел необходимо сложить их и разделить на 3:
    x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
    • Для четырёх чисел необходимо сложить их и разделить на 4:
    x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

    Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

    Непрерывная случайная величина

    f (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

    Некоторые проблемы применения среднего

    Отсутствие робастности

    Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

    Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы , из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон , подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса . Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

    Сложный процент

    Если числа перемножать , а не складывать , нужно использовать среднее геометрическое , а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

    Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

    Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

    [$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

    Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.. Это число неверно по двум причинам.

    Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).

    Средняя величина - это обобщающий показатель статистической совокупности, который погашает индивидуальные различия значений статистических величин, позволяя сравнивать разные совокупности между собой.

    Существует 2 класса средних величин: и .

    К структурным средним относятся мода и медиана , но наиболее часто применяются степенные средние различных видов.

    Степенные средние величины

    Степенные средние могут быть простыми и взвешенными .

    Простая средняя величина рассчитывается при наличии двух и более несгруппированных статистических величин, расположенных в произвольном порядке по следующей общей формуле:

    Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы:

    Где X – значения отдельных статистических величин или середин группировочных интервалов;
    m - показатель степени, от значения которого зависят следующие виды степенных средних величин :
    при m = -1 ;
    при m = 0 ;
    при m = 1 ;
    при m = 2 ;
    при m = 3 .

    Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида, которые будут далее подробно рассмотрены.

    Средняя арифметическая

    Средняя арифметическая - это самая часто используемая средняя величина, которая получается, если подставить в общую формулу m=1. Средняя арифметическая простая имеет следующий вид:

    Где X - значения величин, для которых необходимо рассчитать среднее значение; N - общее количество значений X (число единиц в изучаемой совокупности).

    Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической простой: (3+4+4+5)/4 = 16/4 = 4.

    Средняя арифметическая взвешенная имеет следующий вид:

    Где f - количество величин с одинаковым значением X (частота).

    Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической взвешенной: (3*1 + 4*2 + 5*1)/4 = 16/4 = 4.

    Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X отсутствует нижняя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X.

    Например, на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет. Тогда рассчитаем средний стаж работников по формуле средней арифметической взвешенной, приняв в качестве X середины интервалов стажа (2, 4 и 6 лет):
    (2*10+4*20+6*5)/(10+20+5) = 3,71 года.

    Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин. Рассмотрим такие случаи далее.

    Средняя гармоническая

    Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:

    Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой:

    Например, автомобиль ехал из пункта А в пункт Б со скоростью 90 км/ч, а обратно - со скоростью 110 км/ч. Для определения средней скорости применим формулу средней гармонической простой, так как в примере дано расстояние w 1 =w 2 (расстояние из пункта А в пункт Б такое, же как и из Б в А), которое равно произведению скорости (X) на время (f). Средняя скорость = (1+1)/(1/90+1/110) = 99 км/ч.

    Средняя геометрическая

    Средняя геометрическая применяется при определении средних относительных изменений, о чем сказано в теме Ряды динамики . Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X.

    Например, в период с 2005 по 2008 годы индекс инфляции в России составлял: в 2005 году - 1,109; в 2006 - 1,090; в 2007 - 1,119; в 2008 - 1,133. Так как индекс инфляции - это относительное изменение (индекс динамики), то рассчитывать среднее значение нужно по средней геометрической: (1,109*1,090*1,119*1,133)^(1/4) = 1,1126, то есть за период с 2005 по 2008 ежегодно цены росли в среднем на 11,26%. Ошибочный расчет по средней арифметической дал бы неверный результат 11,28%.

    Средняя квадратическая

    Средняя квадратическая применяется в тех случая, когда исходные значения X могут быть как положительными, так и отрицательными, например при расчете средних отклонений.

    Главной сферой применения квадратической средней является измерение вариации значений X, о чем пойдет речь .

    Средняя кубическая

    Средняя кубическая применяется крайне редко, например, при расчете индексов нищеты населения для развивающихся стран (ИНН-1) и для развитых (ИНН-2), предложенных и рассчитываемых ООН.

    Структурные средние величины

    К наиболее часто используемым структурным средним относятся и .

    Статистическая мода

    Статистическая мода - это наиболее часто повторяющееся значение величины X в статистической совокупности.

    Если X задан дискретно , то мода определяется без вычисления как значение признака с наибольшей частотой. В статистической совокупности бывает 2 и более моды, тогда она считается бимодальной (если моды две) или мультимодальной (если мод более двух), и это свидетельствует о неоднородности совокупности.

    Например, на предприятии работает 16 человек: 4 из них - со стажем 1 год, 3 человека - со стажем 2 года, 5 - со стажем 3 года и 4 человека - со стажем 4 года. Таким образом, модальный стаж Мо=3 года, поскольку частота этого значения максимальна (f=5).

    Если X задан равными интервалами , то сначала определяется модальный интервал как интервал с наибольшей частотой f. Внутри этого интервала находят условное значение моды по формуле:

    Где Мо – мода;
    Х НМо – нижняя граница модального интервала;
    h Мо – размах модального интервала (разность между его верхней и нижней границей);
    f Мо – частота модального интервала;
    f Мо-1 – частота интервала, предшествующего модальному;
    f Мо+1 – частота интервала, следующего за модальным.

    Например, на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет. Рассчитаем модальный стаж работы в модальном интервале от 3 до 5 лет: Мо = 3 + 2*(20-10)/(2*20-10-5) = 3,8 (года).

    Если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

    Статистическая медиана

    Статистическая медиана – это значение величины X, которое делит упорядоченную по возрастанию или убыванию статистическую совокупность на 2 равных по численности части. В итоге у одной половины значение больше медианы, а у другой - меньше медианы.

    Если X задан дискретно , то для определения медианы все значения нумеруются от 0 до N в порядке возрастания , тогда медиана при четном числе N будет лежать посередине между X c номерами 0,5N и (0,5N+1), а при нечетном числе N будет соответствовать значению X с номером 0,5(N+1).

    Например, имеются данные о возрасте студентов-заочников в группе из 10 человек - X: 18, 19, 19, 20, 21, 23, 23, 25, 28, 30 лет. Эти данные уже упорядочены по возрастанию, а их количество N=10 - четное, поэтому медиана будет находиться между X с номерами 0,5*10=5 и (0,5*10+1)=6, которым соответствуют значения X 5 =21 и X 6 =23, тогда медиана: Ме = (21+23)/2 = 22 (года).

    Если X задан в виде равных интервалов , то сначала определяется медианный интервал (интервал, в котором заканчивается одна половина частот f и начинается другая половина), в котором находят условное значение медианы по формуле:

    Где Ме – медиана;
    Х НМе – нижняя граница медианного интервала;
    h Ме – размах медианного интервала (разность между его верхней и нижней границей);
    f Ме – частота медианного интервала;
    f Ме-1 – сумма частот интервалов, предшествующих медианному.

    В ранее рассмотренном примере при расчете модального стажа (на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет) рассчитаем медианный стаж. Половина общего числа работников составляет (10+20+5)/2 = 17,5 и находится в интервале от 3 до 5 лет, а в первом интервале до 3 лет - только 10 работников, а в первых двух - (10+20)=30, что больше 17,5, значит интервал от 3 до 5 лет - медианный. Внутри него определяем условное значение медианы: Ме = 3+2*(0,5*30-10)/20 = 3,5 (года).

    Также как и в случае с модой, при определении медианы если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

    Показатели вариации

    Вариация - это различие значений величин X у отдельных единиц статистической совокупности. Для изучения силы вариации рассчитывают следующие показатели вариации : , , , , .

    Размах вариации

    Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:

    Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.

    Cреднее линейное отклонение

    Cреднее линейное отклонение - это средний модуль отклонений значений X от среднего арифметического значения. Его можно рассчитывать по формуле средней арифметической простой - получим :

    Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. = 4. Рассчитаем среднее линейное отклонение простое: Л = (|3-4|+|4-4|+|4-4|+|5-4|)/4 = 0,5.

    Если исходные данные X сгруппированы (имеются частоты f), то расчет среднего линейного отклонения выполняется по формуле средней арифметической взвешенной - получим :

    Вернемся к примеру про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. = 4 и = 0,5. Рассчитаем среднее линейное отклонение взвешенное: Л = (|3-4|*1+|4-4|*2+|5-4|*1)/4 = 0,5.

    Линейный коэффициент вариации

    Линейный коэффициент вариации - это отношение среднего линейного отклонение к средней арифметической:

    С помощью линейного коэффициента вариации можно сравнивать вариацию разных совокупностей, потому что в отличие от среднего линейного отклонения его значение не зависит от единиц измерения X.

    В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, линейный коэффициент вариации составит 0,5/4 = 0,125 или 12,5%.

    Дисперсия

    Дисперсия - это средний квадрат отклонений значений X от среднего арифметического значения. Дисперсию можно рассчитывать по формуле средней арифметической простой - получим дисперсию простую :

    В уже знакомом нам примере про студента, который сдал 4 экзамена и получил оценки: 3, 4, 4 и 5, = 4. Тогда дисперсия простая Д = ((3-4) 2 +(4-4) 2 +(4-4) 2 +(5-4) 2)/4 = 0,5.

    Если исходные данные X сгруппированы (имеются частоты f), то расчет дисперсии выполняется по формуле средней арифметической взвешенной - получим дисперсию взвешенную :

    В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию взвешенную: Д = ((3-4) 2 *1+(4-4) 2 *2+(5-4) 2 *1)/4 = 0,5.

    Если преобразовать формулу дисперсии (раскрыть скобки в числителе, почленно разделить на знаменатель и привести подобные), то можно получить еще одну формулу для ее расчета как разность средней квадратов и квадрата средней:

    Еще проще можно найти среднее квадратическое отклонение , если предварительно рассчитана дисперсия, как корень квадратный из нее:

    В примере про студента, в котором выше , найдем среднее квадратическое отклонение как корень квадратный из нее: .

    Квадратический коэффициент вариации

    Квадратический коэффициент вариации - это самый популярный относительный показатель вариации:

    Критериальным значением квадратического коэффициента вариации V служит 0,333 или 33,3%, то есть если V меньше или равен 0,333 - вариация считает слабой, а если больше 0,333 - сильной. В случае сильной вариации изучаемая статистическая совокупность считается неоднородной , а средняя величина - нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности.

    В примере про студента, в котором выше , найдем квадратический коэффициент вариации V = 0,707/4 = 0,177, что меньше критериального значения 0,333, значит вариация слабая и равна 17,7%.

    При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины.

    Введение

    Обозначим множество чисел X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (, произносится «x с чертой»).

    Для обозначения среднего арифметического всей совокупности чисел обычно используется греческая буква μ . Для случайной величины , для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

    На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность . Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную , имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

    Обе эти величины вычисляются одним и тем же способом:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

    Примеры

    • Для получения среднего арифметического трёх чисел необходимо сложить их и разделить на 3:
    x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
    • Для получения среднего арифметического четырёх чисел необходимо сложить их и разделить на 4:
    x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

    Непрерывная случайная величина

    Если существует интеграл от некоторой функции f (x) {\displaystyle f(x)} одной переменной, то среднее арифметическое этой функции на отрезке [ a ; b ] {\displaystyle } определяется через определённый интеграл :

    f (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x . {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx.}

    Здесь подразумевается, что b > a . {\displaystyle b>a.}

    Некоторые проблемы применения среднего

    Отсутствие робастности

    Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

    Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы , из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон , подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса . Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

    Сложный процент

    Если числа перемножать , а не складывать , нужно использовать среднее геометрическое , а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

    Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

    Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

    [$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

    Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.

    Направления

    Основная статья: Статистика направлений. Это число неверно по двум причинам.

    Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).

    Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности. Средняя величина дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Она отражает уровень этого признака, отнесенный к единице совокупности. Широкое применение средних объясняется тем, что они имеют ряд положительных свойств, делающих их незаменимым инструментом анализа явлений и процессов в экономике.

    Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в целом определяется ее финансовым положением, В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием основных факторов. Это позволяет средней абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

    Остановимся на некоторых общих принципах применения средних величин.

    1. При определении средней величины в каждом конкретном случае нужно исходить из качественного содержания усредняемого признака, учитывая взаимосвязь изучаемых признаков,а также имеющиеся для расчета данные.

    2. Средняя величина должна прежде всего рассчитываться по однородной совокупности. Качественно однородные совокупности позволяют получить метод группировок, который всегда предполагает расчет системы обобщающих показателей.

    3. Общие средние должны подкрепляться групповыми средними. Например, допустим, что анализ динамики урожайности отдельных сельскохозяйственных культур показывает, что общая средняя урожайность снижается. Однако известно, что урожайность этой культуры зависит от почвенных, климатических и других условий и различна в отдельных районах. Сгруппировав районы по признакам различия и проанализировав динамику групповых средних, можно обнаружить, что в отдельных районах средняя урожайность либо не изменилась, либо возрастает, а снижение общей средней по республике в целом обусловлено ростом удельного веса районов с более низкой урожайностью в общем производстве этой сельскохозяйственной культуры. Очевидно, что динамика групповых средних более плотно отражает закономерности изменения урожайности, а динамика общей средней показывает лишь общий результат.

    Необходим обоснованный выбор единицы совокупности, для которой рассчитывается средняя.

    Категорию средней можно раскрыть через понятие ее определяющего свойства . Согласно этому понятию средняя, будучи обобщающей характеристикой всей совокупности, должна ориентироваться на определенную величину, связанную со всеми единицами этой совокупности. Эту величину можно представить в виде функции: (х 1 ,х 2 ,…х n).

    Так как данная величина в большинстве случаев отражает реальную экономическую категорию, понятие определяющего свойства средней иногда заменяют понятием определяющего показателя.

    Если в приведенной выше функции все величины х 1 ,х 2 ,х n заменить их средней величиной x͞, то значение этой функции должно остаться прежним:

    ƒ(x 1 ,x 2 ,…,x n)=ƒ(x͞, x͞, …,x͞)

    Исходя из данного равенства, и определяется средняя. На практике определить среднюю во многих случаях можно через исходное соотношение средней (ИСС) или ее логическую формулу:

    Так, например, для расчета средней заработной платы работников предприятия необходимо общий фонд заработной платы разделить на число работников:

    Числитель исходного соотношения средней представляет собой ее определяющий показатель. Для средней заработной платы таким определяющим показателем является фонд заработной платы. Независимо от того, какой первичной информацией мы располагаем- известен ли нам общий фонд заработной платы или заработная плата и численность работников, занятых на отдельных должностях, или какие-либо другие исходные данные- в любом случае среднюю заработную плату можно получить только через данное исходное соотношение средней.

    Для каждого показателя, используемого в экономическом анализе, можно составить только одно истинное исходное соотношение для расчета средней. Если, например, требуется рассчитать средний размер вклада в банке, то исходное соотношение будет следующим:

    ИСС=

    Рассмотрим теперь виды средних величин. Выбор вида средней определяется экономическим содержанием показателя и исходных данных. В каждом конкретном случае применяется одна из средних величин:

      Арифметическая

      Гармоническая

      Геометрическая

      Квадратическая

      Кубическая и т.д.

    Перечисленные средние относятся к классу степенных средних и объединяются общей формулой (при различной величине с):

    где х i -i-й вариант рассматриваемого признака (i=1͞,k); f i -удельный вес i-того варианта.

    Рассмотрим вначале степенные средние.

    Сущность и значение средних величин.

    Абсолютные и относительные величины.

    Виды группировок.

    В зависимости от задач, решаемых с помощью группировок выделяют следующие их виды:

    Типологические

    Структурные

    Аналитические

    Главная задача типологической состоит в классификации социально-экономических явлений путем выделения однородных к качественным отношениям групп.

    Качественная однородность при этом понимается в том смысле, что в отношении изучаемого свойства все единицы совокупности подчиняются одному закону развития. Например: группировка предприятиям отраслей экономики.

    Абсолютной величиной называется показатель, выражающий размеры социально-экономического явления.

    Относительной величиной в статистике называется показатель, выражающий количественное соотношение между явлениями. Он получается в результате деления одной абсолютной величины на другую абсолютную величину. Величина с которой мы производим сравнения называется основанием или базой сравнения .

    Абсолютные величины - всегда величины именованные.

    Относительные величины выражаются в коэффициентах, процентах, промили и т.д.

    Относительная величина показывает, во сколько раз, или на сколько процентов сравниваемая величина больше или меньше базы сравнения.

    В статистике различают 8 видов относительных величин:

    Средние величины являются одними из наиболее распространенных обобщающих статистических показателей. Они имеют своей целью одним числом охарактеризовать статистическую совокупность состоящую из меньшинства единиц. Средние величины тесно связаны с законом больших чисел. Сущность этой зависимости заключается в том, что при большом числе наблюдений случайные отклонения от общей статистики взаимопогашаются и в среднем более отчетливо проявляется статистическая закономерность.

    С помощью метода средних решаются следующие основные задачи:

    1. Характеристика уровня развития явлений.

    2. Сравнение двух или нескольких уровней.

    3. Изучение взаимосвязей социально-экономических явлений.

    4. Анализ размещения социально-экономических явлений в пространстве.

    Для решения этих задач статистическая методология разработала различные виды средних.

    Для выяснения методики расчета средней арифметической используем следующие обозначения:

    X - арифметический признак

    X (X1, X2, ... X3) - варианты определенного признака

    n - число единиц совокупности

    Средняя величина признака

    В зависимости от исходных данных средняя арифметическая может быть рассчитана двумя способами:

    1. Если данные статистического наблюдения на сгруппированы, или сгруппированные варианты имеют одинаковые частоты, то рассчитывается средняя арифметическая простая:

    2. Если частоты сгруппированы в данных разные, то рассчитывается среднее арифметическое взвешанное:

    Численность (частоты) вариантов

    Сумма частот

    Среднее арифметическое рассчитывается по разному в дискретных и интервальных вариационных рядах.

    В дискретных рядах варианты признака умножаются на частоты, эти произведения суммируются и полученная сумма произведений делится на сумму частот.

    Рассмотрим пример вычисления средней арифметической в дискретном ряду:

    В интервальных рядах значение признака задано, как известно, в виде интервалов, поэтому, прежде чем рассчитывать среднюю арифметическую, нужно перейти от интервального ряда к дискретному.

    В качестве вариантов Xi используется середина соответствующих интервалов. Они определяются как полусумма нижней и верхней границ.

    Если у интервала отсутствует нижняя граница, то его середина определяется как разность между верхней границей и половиной величины следующих интервалов. При отсутствии верхних границ, середина интервала определяется как сумма нижней границы и половины величины предыдущего интервала. После перехода к дискретному ряду дальнейшие вычисления происходят по методике рассмотренной выше.

    Если веса fi заданы не в абсолютных показателях, а в относительных, то формула расчета средней арифметической будет следующей:

    pi - относительные величины структуры, показывающие, какой процент составляют частоты вариантов в сумме всех частот.

    Если относительные величины структуры заданы не в процентах, а в долях, то среднее арифметическое будет рассчитываться по формуле:

    Среднее значение

    Сре́днее значе́ние - числовая характеристика множества чисел или функций (в математике); - некоторое число, заключённое между наименьшим и наибольшим из их значений.

    Основные сведения

    Исходным пунктом становления теории средних величин явилось исследование пропорций школой Пифагора. При этом не проводилось строгого различия между понятиями средней величины и пропорции. Значительный толчок развитию теории пропорций с арифметической точки зрения был дан греческими математиками - Никомахом Герасским (конец I - начало II в. н. э.) и Паппом Александрийским (III в. н. э.). Первым этапом развития понятия средней является этап, когда средняя стала считаться центральным членом непрерывной пропорции. Но понятие средней как центрального значения прогрессии не даёт возможности вывести понятие средней по отношению к последовательности n членов, независимо от того, в каком порядке они следуют друг за другом. Для этой цели необходимо прибегнуть к формальному обобщению средних. Следующий этап - переход от непрерывных пропорций к прогрессиям - арифметической, геометрической и гармонической (англ. ).

    В истории статистики впервые широкое употребление средних величин связано с именем английского учёного У. Петти. У. Петти один из первых пытался придать средней величине статистический смысл, связав её с экономическими категориями. Но описания понятия средней величины, его выделения, Петти не произвёл. Родоначальником теории средних величин принято считать А. Кетле. Он одним из первых начал последовательно разрабатывать теорию средних величин, пытаясь подвести под неё математическую базу. А. Кетле выделял два вида средних величин - собственно средние и средние арифметические. Собственно средние представляют вещь, число, действительно существующие. Собственно средние или средние статистические должны выводиться из явлений однокачественных, одинаковых по своему внутреннему значению. Средние арифметические - числа, дающие возможно близкое представление о многих числах, различных, хотя и однородных.

    Каждый из видов средней может выступать либо в форме простой, либо в форме взвешенной средней. Правильность выбора формы средней вытекает из материальной природы объекта исследования. Формулы простых средних применяются в случае, если индивидуальные значения усредняемого признака не повторяются. Когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторений индивидуальных значений признака присутствует в расчётных формулах степенных средних. В этом случае они называются формулами взвешенных средних.

    Иерархия средних значений в математике

    • среднее значение функции - понятие, определяемое многими способами.
      • Более конкретно, но на основе произвольных функций, определяются средние Колмогорова для набора чисел.
        • среднее степенное - частный случай средних Колмогорова при ϕ (x) = x α {\displaystyle \phi (x)=x^{\alpha }} . Средние различных степеней связывает между собой неравенство о средних. Наиболее распространённые частные случаи:
          1. среднее арифметическое (α = 1 {\displaystyle \alpha =1});
          2. среднее квадратическое (α = 2 {\displaystyle \alpha =2});
          3. среднее гармоническое (α = − 1 {\displaystyle \alpha =-1});
          4. по непрерывности при α → 0 {\displaystyle \alpha \to 0} доопределяется среднее геометрическое, которое также является Колмогоровским средним при ϕ (x) = log ⁡ x {\displaystyle \phi (x)=\log x}
    • Среднее взвешенное - обобщение средней величины на случай произвольной линейной комбинации:
      • Среднее арифметическое взвешенное.
      • Среднее геометрическое взвешенное.
      • Среднее гармоническое взвешенное.
    • среднее хронологическое - обобщает значения признака для одной и той же единицы или совокупности в целом, изменяющихся во времени.
    • среднее логарифмическое, определяемое по формуле a ¯ = a 1 − a 2 ln ⁡ (a 1 / a 2) {\textstyle {\bar {a}}={\frac {a_{1}-a_{2}}{\ln(a_{1}/a_{2})}}} , используется в теплотехнике
    • среднее логарифмическое, определяемое в электроизоляции соответствии с ГОСТ 27905.4-88 определяется как l o g a ¯ = log ⁡ a 1 + l o g a 2 + . . . + . . . l o g a n a 1 + a 2 + . . . + a n {\textstyle log{\bar {a}}={\frac {\log a_{1}+loga_{2}+...+...loga_{n}}{a_{1}+a_{2}+...+a_{n}}}} (логарифм по любому основанию)

    В теории вероятностей и статистике

    Основная статья: Показатели центра распределения
    • непараметрические средние - мода, медиана.
    • среднее значение случайной величины - то же, что математическое ожидание случайной величины. По сути - среднее значение её функции распределения.

    Каким знаком обозначается среднее арифметическое значение?

    Вот, скажем, сумма - это эпсилон прописная...

    Ксения

    Средняя арифметическая - это тот предел, около которого группируются отдельные значения наблюдаемых и изучаемых характеристик, Средняя арифметическая - частное от деления суммы значений кого-либо признака на число элементов совокупности. В статистике средняя арифметическая обычно обозначается через отдельные значения признака (или частные результаты опыта) – через x1, x2, x3 и т. д., а общие количество признаков (или количество опытов) - n.
    При большом количестве измерений положительные и отрицательные случайные погрешности встречаются одинаково часто. По многократным измерениям какой-либо физической величины можно определить ее среднее арифметическое значение. Многократные измерения также дают возможность установить точность измерения, как для окончательного результата, так и для отдельных измерений, т. е. найти те границы, в которых находится полученный результат измеряемой величины.
    При п измерениях некоторой величины мы получим п различных ее значений. Наиболее близким к истинному значению измеряемой величины будет среднее арифметическое значение всех измерений.
    Если обозначить отдельные измерения через а\, az, a3, ..ап, то среднеарифметическое значение измеряемой величины определится по формуле:
    п
    п - at + аг + - + Д„ _\1 а,-
    а _ ------------------
    =Y-^
    ^J П
    Значения отдельных измерений отличаются от среднеарифметического значения а0 на следующие величины:
    Абсолютные значения разностей (Да^ Даг,...) между средним арифметическим значением измеряемой величины и величиной отдельных измерений называют абсолютными погрешностями отдельных измерений. Среднее арифметическое абсолютных погрешностей всех измерений, которое необходимо для определения относительной погрешности измерений и записи окончательного результата, вычисляется по формуле:
    ^-. (2)
    Эту погрешность называют средней абсолютной погрешностью измерения. Принимая один знак абсолютных погрешностей, мы тем самым сознательно берем наибольшую из возможных погрешностей.

    Что такое среднее арифметическое? Как найти среднее арифметическое?

    Формула среднего арифметического чисел?

    Алекс-89

    Среднее арифметическое нескольких чисел - это сумма этих чисел, делённая на их количество.

    x ср - среднее арифметическое

    S - сумма чисел

    n - количество чисел.

    Например, нам нужно найти среднее арифметическое чисел 3, 4, 5 и 6.

    Для этого нам нужно их сложить и полученную сумму разделить на 4:

    (3 + 4 + 5 + 6) : 4 = 18: 4 = 4,5.

    Алсу - ш

    Мне, как математику, интересны вопросы по данному предмету.

    Начну с истории вопроса. Над средними величинами задумывались с древних времмен. Среднее арифметическое, среднее геометоическое, среднее гармоническое. Эти понятия предложены в древней Греции пифагорийцами.

    А теперь интересующий нас вопрос. Что же понимается под средним арифметичским нескольких чисел:

    Итак, для нахождения среднего арифметического чисел нужно прибавить все числа и разделить полученную сумму на количество слагаемых.

    Имеет место формула:


    Пример. Найти среднее арифметическое чисел: 100, 175, 325.

    Воспользуемся формулой нахождения среднего арифметического трех чисел (то есть вместо n будет 3; нужно сложить все 3 числа и разделить полученную сумму на их количество, т.е. на 3). Имеем: х=(100+175+325)/3=600/3=200.

    Ответ: 200.

    Арифметика считается самым элементарным разделом математики и изучает простые действия с числами. Поэтому и среднее арифметическое также находится очень просто. Начнем с определения. Среднее арифметическое - это величина, которая показывает какое число наиболее близко к истине при нескольких последовательных однотипных действиях. Например при беге на сто метров человек каждый раз показывает разное время, но средняя величина будет в пределах например 12 секунд. Нахождение среднего арифметического таким образом сводится в последовательному суммированию всех чисел определенного ряда (результатов забегов) и деление этой суммы на количество этих забегов (попыток, чисел). В виде формулы это выглядит так:

    Sариф = (Х1+Х2+..+Хn)/n

    Среднее арифметическое - это среднее число между несколькими числами.

    Например между числами 2 и 4 среднее число 3.

    Формула нахождения среднего арифметического такая:

    Нужно сложить все числа и разделить на количество этих чисел:

    Например у нас 3 числа: 2, 5 и 8.

    Находим среднее арифметическое:

    X=(2+5+8)/3=15/3=5

    Область применения среднего арифметического достаточно широка.

    Например можно зная координаты двух точек отрезка найти координаты середины этого отрезка.

    Например координаты отрезка: (X1,Y1,Z1)-(X2,Y2,Z2).

    Обозначим середину этого отрезка координатами X3,Y3,Z3.

    Отдельно находим середину для каждой координаты:

    Красивая поляна

    Средне арифметическое число, это числа сложенные вместе и деленные на их количество, полученный ответ и есть средне арифметическое число.

    Например: Катя положила в копилку 50 рублей, Максим 100 рублей, а Саша положил в копилку 150 рублей. 50 + 100 + 150 = 300 рублей в копилке, теперь делим эту сумму на три (три человека положили деньги). Итак 300: 3 = 100 рублей. Эти 100 рублей и будет средне арифметически, каждый из них положил в копилку.

    Есть такой простой пример: один человек ест мясо, другой человек ест капусту, а средне арифметически они оба едят голубцы.

    Таким же образом рассчитывают среднюю зарплату...

    Среднеарифметическое-это среднее значение из заданных...

    Т.е. по простому имеем количество палочек разной длины и хотим узнать их среднее значение..

    Логично, что для этого мы их сводим вместе, получая длинную палку, а потом делим её на требуемое число частей..

    Вот и выходит среднеарифметическое..

    Вот так и выводится формула:Sa=(S(1)+..S(n))/n..

    Птичка2014

    Среднее арифметическое - это сумма всех значений и деленное на их количество.

    Например числа 2, 3 , 5, 6 . Нужно их сложить 2+ 3+ 5 + 6 = 16

    16 делим на 4 и получаем ответ 4 .

    4 и есть среднее арифметическое этих чисел.

    Azamatik

    Средним арифметическим называют сумму чисел, разделенное на количество этих самых чисел. А найти среднее арифметическое очень просто.

    Как следует из определения мы должны взять числа, сложить их и разделить на их количество.

    Приведем пример: дается числа 1, 3, 5, 7 и нам надо найти среднее арифметическое этих чисел.

    • сначала складываем эти числа (1+3+5+7) и получаем 16
    • полученный результат нам надо разделить на 4 (кол - во): 16/4 и получаем результат 4.

    Итак, среднее арифметическое чисел 1, 3, 5 и 7 - это 4.

    Среднее арифметическое - среднее значение среди заданных показателей.

    Оно находится путем деления суммы всех показателей на их количество.

    Например, у меня есть 5 яблок весом 200, 250, 180, 220 и 230 грамм.

    Средний вес 1 яблока находим так:

    • ищем общий вес всех яблок (сумму всех показателей) - он равен 1080 граммов,
    • делим общий вес на количество яблок 1080:5 = 216 граммов. Это и есть среднее арифметическое.

    Это наиболее часто применяемый в статистике показатель.

    Зеленый чебуречек

    Это мы знаем со школьной скамьи. У кого был хороший учитель по математике, то запомнить это нехитрое действие можно было с первого раза.

    При нахождении среднего арифметического необходимо сложить все имеющиеся числа и разделить на их количество.

    Например, я купила в магазине 1 кг яблок, 2 кг бананов, 3 кг апельсинов и 1 кг киви. Сколько килограммов в среднем я купила фруктов.

    7/4= 1,8 килограммов. Это и будет среднеарифметическим значением.

    Бьемон эпу

    Помню как итоговую контрольную по математике сдавал

    Так там нужно было среднее арифметическое найти.

    Хорошо что добрые люди подсказали что делать, иначе беда.

    Например у нас 4 числа.

    Складываем числа и делим на их количество (в данном случае 4)

    Например цифры 2,6,1,1. Складываем 2+6+1+1 и делим на 4 = 2.5

    Как видите ничего сложного. Так что среднее арифметическая - это среднее значение всех чисел.