Все о тюнинге авто

 Углеродный цикл на Солнце и в недрах звёзд. Термоядерные реакции на солнце Новый взгляд на природу термоядерного синтеза на Солнце и изобретение «Способ управляемого термоядерного синтеза и управляемый термоядерный реактор для осуществления управляемого

Солнце является неисчерпаемым источником энергия. Многие миллиарды лет оно испускает огромное количе­ство тепла и света. Для создания такого же количества энергии, какое испускает Солнце, понадобилось бы 180 ООО ООО миллиардов электростанций, обладающих мощностью Куйбышевской ГЭС.

Основным, источником энергии Солнца служат ядер - ныа реакции. Какие же реакции там происходят? Может быть, Солнце - это гигантский атомный котёл, сжигаю­щий огромные запасы урана или тория?

Солнце состоит главным образом из лёгких элемен­тов - водорода, гелия, углерода, азота и т. д. Около по­ловины его массы составляет водород. Количество урана и тория на Солнце очень невелико. Поэтому они не могут быть основными источниками солнечной энергии.

В недрах Солнца, где происходят ядерные реакции, температура достигает примерно 20 миллионов градусов. Заключённое там вещество находится под огромным дав­лением в сотни миллионов тонн на каждый квадратный сантиметр и чрезвычайно уплотнено. При таких условиях могут происходить ядерные реакции иного типа, которые приводят не к делению тяжёлых ядер на более лёгкие, а наоборот - к образованию более тяжёлых ядер из бо­лее лёгких.

Мы уже видели, что соединение протона и нейтрона в ядро тяжёлого водорода или двух прогонов и двух ней­тронов в ядро гелия сопровождается освобождением боль­шого количества энергии. Однако трудность получения необходимого количества нейтронов лишает этот способ освобождения атомной энергии практической ценности.

Более тяжёлые ядра можно создавать и с помощью одних протонов. Например, соединив друг с другом два протона, мы получим ядро тяжёлого водорода, так как один из двух протонов тотчас же превратится в нейтрон.

Соединение протонов в более тяжёлые ядра происхо­дит под действием ядерных сил. При этом освобождается очень большая энергия. Но при сближении протонов бы­стро возрастает электрическое отталкивание между ними. Медленные прогоны не могут преодолеть этого отталкива­ния и подойти друг к другу на достаточно близкое рас­стояние. Поэтому такие реакции производятся только очень быстрыми протонами, имеющими запас энергии, до­статочный для преодоления действия электрических сил отталкивания.

При царящей в недрах Солнца чрезвычайно высокой температуре атомы водорода теряют свои электроны. Не­которая доля ядер этих атомов (прогонов) приобретает скорости, достаточные для образования более тяжёлых ядер. Так как количество таких протонов в глубине Солнца весьма велико, то и количество создаваемых ими более тяжёлых ядер оказывается значительным. При этом освобождается очень большая энергия.

Ядерные реакции, идущие при очень высоких темпера­турах, называются термоядерными. Примером тер­моядерной реакции может служить образование ядер тяжёлого водорода из двух протонов. Оно происходит сле­дующим путём:

1 + ,№ - + +1е« .

Протон протон тяжёлый позитрон водород

Освобождаемая при этом энергия почти в 500 ООО раз больше, чем при горении угля.

Необходимо отметить, что и при столь высокой темпе­ратуре далеко не каждое столкновение протонов друг с другом приводит к образованию ядер тяжёлого водо­рода. Поэтому протоны расходуются постепенно, что и обеспечивает выделение ядерной энергии на протяжении сотен миллиардов лет.

Солнечная энергия, повидимому, получается с помо­щью другой ядерной реакции - превращения водорода в гелий. Если четыре ядра водорода (протона) соединить в одно более тяжёлое ядро, то это и будет ядро гелия, так как два из этих четырёх протонов превратятся в нейтроны. Такая реакция имеет следующий вид:

4,№ - 2Не*+ 2 +1е° . водород гелий позитроны

Образование гелия из водорода происходит на Солнце несколько более сложным путём, который, однако, приво­дит к такому же результату. Происходящие при этом реакции изображены на рис. 23.

Сначала один протон соединяется с ядром углерода бС12, образуя неустойчивый ивотоп азота 7И13- Эта реак­ция сопровождается освобождением некоторого количества ядерной энергии, уносимой гамма-излучением. Об­разовавшийся азот т№3 вскоре превращается в устойчи­вый изотоп углерода 6С13. При этом испускается пози­трон, обладающий значительной энергией. Через некото­рое время к ядру бС13 присоединяется новый (второй) протон, в результате чего возникает устойчивый изотоп азота 7№4, а часть энергии снова освобождается в виде гамма-излучения. Третий протон, присоединившись к ядру 7МИ, образует ядро неустойчивого изотопа кисло­рода вО15. Эта реакция также сопровождается испуска­нием гамма-лучей. Образовавшийся изотоп 8015 выбра­сывает позитрон и превращается в устойчивый изотоп азота 7№5. Присоединение четвёртого протона к этому ядру приводит к возникновению ядра 8016, которое рас­падается на два новых ядра: ядро углерода бС и ядро гелия гНе4.

В результате этой цепочки следующих друг за дру­гом ядерных реакций вновь образуется исходное ядро углерода 6С12, а вместо четырёх ядер водорода (прото­нов) появляется ядро гелия. На осуществление этого цикла реакций уходит около 5 миллионов лет. Восстановленное

Ядро бС12 может снова начать такой же цикл. Освобождае­мая энергия, уносимая гамма-излучением и позитронами, и обеспечивает излучение Солнца.

Повидимому, таким же путём получают огромную энергию и некоторые другие звёзды. Однако многое в этом сложном вопросе ещё остаётся нерешённым.

Же условиях протекают значительно быстрее. Так, реакция

,№ + ,№ -. 2Не3

Дейтерий лёгкий лёгкий водород гелий

Может при наличии большого количества водорода за­кончиться в несколько секунд, а реакция -

ХНз + ,Н‘ ->2Не4 тритий лёгкий гелий водород

В десятые доли секунды.

Быстрое соединение лёгких ядер в более тяжёлые, происходящее при термоядерных реакциях, позволило создать новый вид атомного оружия - водородную бомбу. Одним из возможных путей создания водородной бомбы является термоядерная реакция между тяжёлым и сверхтяжёлым водородом:

1№ + ,№ - 8Не*+ «о1 .

Дейтерий тритий гелий нейтрон

Энергия, освобождаемая при этой реакции, примерно в 10 раз больше, чем при делении ядер урана или плутония.

Чтобы начать эту реакцию, надо нагреть дейтерий и тритий до очень высокой температуры. Такую темпера­туру в настоящее время можно получить только при атомном взрыве.

Водородная бомба имеет прочную металлическую обо­лочку, размеры которой больше размеров атомных бомб. Внутри неё находится обычная атомная бомба на уране или плутонии, а также дейтерий и тритий. Для взрыва во­дородной бомбы надо сначала взорвать атомную бомбу. Атомный взрыв создаёт большую температуру и давление, при которых заключённый в бомбе водород начнёт пре­вращаться в гелий. Освобождаемая при этом энергия под­держивает высокую температуру, необходимую для даль­нейшего протекания реакции. Поэтому превращение водо­рода в гелий будет продолжаться до тех пор, пока либо не «сгорит» весь водород, либо не разрушится оболочка бомбы. Атомный взрыв как бы «поджигает» водородную бомбу, а она своим действием значительно усиливает мощность атомного взрыва.

Взрыв водородной бомбы сопровождается теми же по­следствиями, что и атомный взрыв - возникновением вы­сокой температуры, ударной волны и радиоактивных продуктов. Однако мощность водородных бомб во много раз больше мощности урановых и плутониевых бомб.

Атомные бомбы имеют критическую массу. Увеличи­вая количество ядерного горючего в такой бомбе, мы не сумеем, полностью его разделить. Значительная часть урана или плутония обычно разбрасывается в зоне взрыва в неразделённом виде. Это сильно затрудняет увеличение мощности атомных бомб. У водородной бомбы никакой критической массы нет. Поэтому мощность таких бомб может быть значительно увеличена.

Производство водородных бомб на дейтерии и тритии связано с громадными расходами энергии. Дейтерий можно получать из тяжёлой воды. Для получения три­тия надо бомбардировать литий 6 нейтронами. Происхо­дящая при этом реакция приведена на стр. 29. Наиболее мощным источником нейтронов являются атомные Котлы. Через каждый квадратный сантиметр поверхности цент­ральной части котла средней мощности выходит в защит­ную оболочку около 1000 миллиардов нейтронов. Сделав в этой оболочке каналы и поместив в них литий 6, можно получать тритий. Природный литий имеет два изотопа: литий 6 и литий 7. Доля лития б составляет всего 7,3%. Полученный же из него тритий оказывается радиоактив­ным. Испуская электроны, он превращается в гелий 3. Период полураспада трития равен 12 годам.

Советский Союз в короткий срок ликвидировал моно­полию США на атомную бомбу. После этого американ­ские империалисты пытались запугивать миролюбивые народы водородной бомбой. Однако и эти расчёты поджи­гателей войны провалились. 8 августа 1953 г. на пятой сессии Верховного Совета СССР товарищ Маленков указал, что Соединённые Штаты не являются монополи­стами и в производстве водородной бомбы. Вслед за тем 20 августа 1953 г. было опубликовано Правительственное сообщение об успешном испытании водородной бомбы в Советском Союзе. В этом сообщении Правительство нар - шей страны ещё раз подтвердило своё неизменное жела­ние добиться запрещения всех видов атомного оружия и установления строгого международного контроля за вы­полнением этого запрещения.

Можно ли сделать термоядерную реакцию управляе­мой и использовать энергию ядер водорода в промыш­ленных целях?

Процесс превращения водорода в гелий не имеет кри­тической массы. Поэтому его можно производить даже при небольшом количестве изотопов водорода. Но для этого надо создать новые источники высокой темпера­туры, отличающиеся от атомного взрыва чрезвычайно малыми размерами. Возможно также, что с этой целью придётся использовать несколько более медленные тер­моядерные реакции, чем реакция между дейтерием и тритием. В настоящее время учёные работают над реше­нием этик задач.

Несомненно, что в ранний период после Большого взрыва крошечная, очень горячая Вселенная расширялась и охлаждалась до тех пор, пока протоны и нейтроны не получили возможности соединяться друг с другом, образуя атомные ядра. Какие же ядра получались и в какой пропорции? Это очень интересная проблема для космогоников (ученых, занимающихся происхождением Вселенной), - проблема, которая в конечном счете вернет нас к рассмотрению новых и сверхновых. Поэтому давайте рассмотрим ее в некоторых деталях.

Атомные ядра имеют некоторое число разновидностей. Чтобы разобраться в этих разновидностях, их классифицируют в зависимости от числа протонов, имеющихся в этих ядрах. Это число колеблется от 1 до 100 и выше.

Каждый протон имеет электрический заряд +1. Другими частицами, присутствующими в ядрах, являются нейтроны, которые не имеют электрического заряда. Поэтому общий электрический заряд атомного ядра равен числу содержащихся в нем протонов. Ядро, содержащее один протон, имеет заряд +1, ядро с двумя протонами имеет заряд +2, ядро с пятнадцатью протонами имеет заряд +15 и т. д. Число протонов в данном ядре (или число, выражающее электрический заряд ядра) называется атомным числом.

Вселенная остывает все больше, и каждое ядро уже в состоянии уловить какое-то количество электронов. Каждый электрон имеет электрический заряд -1, и, поскольку противоположные заряды притягиваются, отрицательно заряженный электрон стремится остаться вблизи положительно заряженного ядра. В обычных условиях число электронов, которые могут удерживаться отдельным ядром, равно числу протонов в этом ядре. Когда число протонов в ядре равно числу окружающих его электронов, суммарный электрический заряд ядра и электронов равен нулю, а их сочетание дает нейтральный атом. Число протонов или электронов соответствует атомному числу.

Вещество, состоящее из атомов с одним и тем же атомным числом, называется элементом. Например, водород - элемент, состоящий из атомов, ядра которых содержат один протон и один электрон вблизи него. Такой атом называется «атомом водорода», а ядро такого атома - «ядром водорода». Таким образом, атомное число водорода равно 1. Гелий состоит из атомов гелия, содержащих ядра с двумя протонами, отсюда атомное число гелия равно 2. Аналогично литий имеет атомное число 3, бериллий - 4, бор - 5, углерод - 6, азот - 7, кислород - 8 и т. д.

С помощью химического анализа атмосферы Земли, океана и почвы установлено, что существует 81 устойчивый элемент, т. е. 81 элемент, которые не претерпят никаких изменений в естественных условиях неопределенно долго.

Наименее сложный атом на Земле (из фактически существующих) - это атом водорода. Рост атомного числа приведет нас к самому сложному устойчивому атому на Земле. Это атом висмута, имеющий атомное число 83, т. е. каждое ядро висмута заключает в себе 83 протона.

Так как всего имеется 81 устойчивый элемент, то в списке атомных чисел два числа должны быть пропущены, и это так: атомы, имеющие 43 протона и 61 протон, неустойчивы, элементов с атомными числами 43 и 61, подвергшихся химическому анализу, в естественных материалах нет.

Это, однако, не значит, что элементы с атомными числами 43 и 61 или с числом более 83 не могут существовать временно. Эти атомы нестабильны, поэтому рано или поздно, в один или несколько приемов они распадутся на атомы, которые останутся устойчивыми. Это не обязательно случается мгновенно, но может потребовать долгого времени. Торию (атомное число 90) и урану (атомное число 92) требуются миллиарды лет атомного распада, чтобы прийти к устойчивым атомам свинца (атомное число 82).

В сущности, за все долгие миллиарды лет существования Земли только часть тория и урана, изначально присутствовавших в ее структуре, успела распасться. Около 80 % первоначального тория и 50 % урана избежали распада и сегодня еще могут находиться в породах земной поверхности.

Хотя все 81 устойчивый элемент (плюс торий и уран) присутствуют в земной коре (ее верхних слоях), но в разных количествах. Наиболее распространенными являются кислород (атомное число 8), кремний (14), алюминий (13) и железо (26). Кислород составляет 46,6 % земной коры, кремний - 27,7 %, алюминий - 8,13 %, железо -5 %. Эта четверка образует почти семь восьмых частей земной коры, одну восьмую - все остальные элементы.

Конечно, названные элементы редко существуют в чистом виде. Смешиваясь, они стремятся соединиться друг с другом. Эти сочетания (или комбинации элементов) атомов называются соединениями. Атомы кремния и кислорода связываются между собой весьма прихотливым образом, к этому соединению (кремний/кислород) здесь и там присоединяются атомы железа, алюминия и других элементов. Такие соединения - силикаты - обычные породы, из которых в основном состоит земная кора.

Поскольку атомы кислорода сами по себе легче, чем другие наиболее распространенные элементы земной коры, то общая масса кислорода содержит больше атомов, чем аналогичная масса других элементов. На каждую 1000 атомов земной коры приходится 625 атомов кислорода, 212 кремния, 65 алюминия и 19 железа, т. е. 92 % атомов земной коры приходится, так или иначе, на эти четыре элемента.

Земная кора - не пробный образец Вселенной и даже Земли в целом. «Сердцевина» Земли (центральная область, составляющая одну треть массы планеты), как считают, состоит почти целиком из железа. Если принять это в соображение, то железо составляет 38 % массы всей Земли, кислород - 28 %, кремний-15 %. Четвертым наиболее распространенным элементом может быть магний, а не алюминий, составляющий до 7 % земной массы. Эти четыре элемента составляют вместе семь восьмых массы всей Земли. Тогда на каждую 1000 атомов в целом на Земле приходится 480 атомов кислорода, 215 - железа, 150 - кремния и 80 - магния, т. е. вместе эта четверка составляет 92,5 % всех атомов Земли. Но Земля не типичная планета Солнечной системы. Возможно, Венера, Меркурий, Марс и Луна, очень схожие с Землей по своему строению, составлены из каменистых материалов и, как Венера и Меркурий, имеют богатую железом сердцевину. В какой-то мере то же верно для спутников и некоторых астероидов, но все эти скалистые миры (с железными ядрами или без них) не составляют и половины процента общей массы всех обращающихся вокруг Солнца объектов. Остальные 99,5 % массы Солнечной системы (без массы Солнца) принадлежат четырем планетам-гигантам: Юпитеру, Сатурну, Урану и Нептуну. Только Юпитер (крупнейший из всех) составляет более 70 % общей массы.

Предположительно Юпитер имеет относительно небольшую скалисто-металлическую сердцевину. Структура гигантской планеты, судя по данным спектроскопии и пробам планет, состоит из водорода и гелия. Сказанное, видимо, справедливо и для других планет-гигантов.

Но вернемся к Солнцу, масса которого в 500 раз больше массы всех планетных тел, вместе взятых, - от Юпитера до крошечной пылинки; мы обнаружим (главным образом благодаря спектроскопии), что его объем заполняет все тот же водород с гелием. Фактически примерно 75 % его массы падает на водород, 22 %-на гелий, а 3 % - это все остальные элементы, вместе взятые. Количественный состав атомов Солнца окажется таким, что на каждую 1000 атомов Солнца приходится 920 атомов водорода и 80 атомов гелия. Менее одного атома из тысячи представляют все остальные элементы.

Бесспорно, Солнце обладает львиной долей массы всей Солнечной системы, и мы не очень ошибемся, решив, что его элементарный состав представителен для всей системы в целом. Подавляющее большинство звезд по своему элементарному составу напоминает Солнце. Кроме того, известно, что разреженные газы, заполняющие межзвездное и межгалактическое пространство, тоже в основном водород и гелий.

Поэтому можно заключить, что из 1000 атомов всей Вселенной 920 - водород, 80 - гелий и менее одного - все прочее.

ВОДОРОД И ГЕЛИЙ

Почему так? Увязывается ли водородно-гелиевая Вселенная с Большим взрывом? Очевидно, да. По крайней мере в том, что касается системы рассуждений Гамова, системы улучшенной, но в основе оставшейся без изменений.

Вот как это работает. Очень скоро после Большого взрыва, через какую-то долю секунды, расширяющаяся Вселенная остыла до такой точки, когда образовались известные нам составляющие атомов: протоны, нейтроны и электроны. В условиях огромной температуры, которая еще царила в то время, ничего более сложного существовать не могло. Частицы не могли соединиться друг с другом: при такой температуре, даже сталкиваясь, они тут же отскакивали в разные стороны.

Это остается справедливым и при столкновениях протон - протон или нейтрон - нейтрон даже при гораздо меньших температурах, таких, как температура нынешней Вселенной. Однако по мере того как температура ранних этапов эволюции Вселенной продолжала падать, наступил момент, когда при столкновениях протон - нейтрон появилась возможность двум частицам удержаться вместе. Они удерживаются вместе так называемым сильным взаимодействием - сильнейшим из четырех известных взаимодействий.

Протон-1 - это ядро водорода, как было сказано ранее в этой главе. Но комбинация протон - нейтрон - это тоже ядро водорода, потому что она имеет один протон, а это все, что требуется, чтобы квалифицировать ядро как водородное. Эти две разновидности ядер водорода (протон и протон - нейтрон) называются изотопами водорода и определяются в зависимости от общего числа частиц, которые они включают. Протон, в котором есть только одна частица, - это ядро водород-1. Комбинация протон - нейтрон, которая включает всего две частицы, - это ядро водород-2.

При высоких температурах ранней Вселенной, когда формировались различные ядра, ядро водорода-2 было не очень устойчиво. Оно стремилось либо к распаду на отдельные протоны и нейтроны, либо к соединению с дополнительными частицами, с последующим образованием более сложных (но, возможно, более стабильных) ядер. Ядро водорода-2 может столкнуться с протоном и примкнуть к нему, образуя ядро, составленное двумя протонами и одним нейтроном. В этой комбинации два протона, и мы получим ядро гелия, а так как в ядре три частицы, то это гелий-3.

Если водород-2 сталкивается и смыкается с нейтроном, образуется ядро, состоящее из одного протона и двух нейтронов (снова вместе три частицы). В результате получается водород-3.

Водород-3 неустойчив ни при какой температуре, даже при невысокой температуре современной Вселенной, поэтому он претерпевает вечные изменения, даже если он свободен от влияния других частиц или столкновений с ними. Один из двух нейтронов в ядре водорода-3 рано или поздно превращается в протон, и водород-3 становится гелием-3. В теперешних условиях это изменение не слишком быстро: половина ядер водорода-3 обращается в гелий-3 в течение немногим более двенадцати лет. При огромных температурах ранней Вселенной это изменение, несомненно, было более быстрым.

Итак, у нас теперь три типа ядер, устойчивых в современных условиях: водород-1, водород-2 и гелий-3.

Частицы гелия-3 соединяются друг с другом еще слабее, чем частицы водорода-2, и особенно при повышенных температурах ранней Вселенной, у гелия-3 сильная тенденция к распаду или изменениям путем дальнейшего добавления частиц.

Если бы гелию-3 случилось натолкнуться на протон и ему пришлось бы к нему присоединиться, тогда мы имели бы ядро, состоящее из трех протонов и нейтрона. Это был бы литий-4, нестабильный при любой температуре, так как даже в условиях прохладной температуры земной поверхности один из его протонов быстро превращается в нейтрон. В результате получается комбинация два протона - два нейтрона, или гелий-4.

Гелий-4 - очень устойчивое ядро, самое устойчивое при обычных температурах, за исключением единственного протона, образующего водород-1. Однажды сложившись, он почти не имеет тенденции к распаду, даже при очень высоких температурах.

Если гелий-3 сталкивается и соединяется с нейтроном, тут же образуется гелий-4. Если сталкиваются и соединяются два ядра водорода-2, опять же образуется гелий-4. Если гелий-3 сталкивается с водородом-2 или с другим гелием-3, образуется гелий-4, а избыточные частицы отсеиваются как отдельные протоны и нейтроны. Таким образом, гелий-4 образуется за счет водорода-2 и гелия-3.

В сущности, когда Вселенная остыла до температуры, при которой протоны и нейтроны, соединяясь, могли строить более сложные ядра, то первым таким ядром, образовавшимся в большом количестве, был именно гелий-4.

По мере дальнейшего расширения и охлаждения Вселенной водород-2 и гелий-3 все меньше стремились к изменению, а некоторые из них были, так сказать, заморожены для неизменяемого существования. В настоящее время только один атом водорода из каждых 7000 - водород-2; гелий-3 еще реже - только один атом гелия на миллион. Значит, не принимая в расчет водород-2 и гелий-3, мы можем сказать, что вскоре после того, как Вселенная достаточно остыла, ее составляли ядра водорода-1 и гелия-4. Таким образом, масса Вселенной слагалась из 75 % водорода-1 и 25 % гелия-4.

С течением времени в местах, где температура была достаточно низкой, ядра притягивали отрицательно заряженные электроны, которые удерживались при положительно заряженных ядрах силой электромагнитного взаимодействия - вторым сильнейшим из четырех взаимодействий. Единственный протон ядра водорода-1 ассоциировал с одним электроном, а два протона ядра гелия-4 соединялись с двумя электронами. Так формировались атомы водорода и гелия. Выражаясь количественно, на каждую 1000 атомов во Вселенной приходится 920 атомов водорода-1 и 80 атомов гелия-4.

В этом и есть объяснение водородно-гелиевой Вселенной. Но минуточку! Как обстоит дело с атомами тяжелее, чем гелий, и с более высоким атомным весом? (Соберем все атомы, содержащие более четырех частиц в ядрах, под знаком «тяжелые атомы»). Во Вселенной очень мало тяжелых атомов, тем не менее они существуют. Как они появились? Логика подсказывает, что, хотя гелий-4 очень устойчив, все же в нем есть слабая тенденция соединяться с протоном, нейтроном, водородом-2, гелием-3 или с другим гелием-4, образуя небольшие количества различных тяжелых атомов; это и есть источник возникновения примерно 3 % массы сегодняшней Вселенной, состоящей из этих атомов.

К сожалению, такой ответ проверки не выдержит. Если гелий-4 столкнулся бы с водородом-1 (один протон) и они соединились, появилось бы ядро с тремя протонами и двумя нейтронами. Это был бы литий-5. Если гелий-4 столкнулся бы и соединился с нейтроном, в результате появилось бы ядро с двумя протонами и тремя нейтронами, или гелий-5.

Ни литий-5, ни гелий-5, даже сформировавшись в условиях нашей остывшей Вселенной, не просуществуют больше нескольких триллионных долей триллионной доли секунды. Именно за такой период времени они распадутся либо в гелий-4, либо в протон или нейтрон.

Возможность столкновения и слияния гелия-4 с водородом-2 или гелием-3 очень призрачна, учитывая, как редки два последних ядра в первозданной смеси. Любые тяжелые атомы, которые могли образоваться таким путем, слишком немногочисленны, чтобы ими можно было объяснить столь значительное число атомов, существующих сегодня. Более возможно соединение одного ядра гелия-4 с другим ядром гелия-4. Такое сдвоенное ядро, состоящее из четырех протонов и четырех нейтронов, должно стать бериллием-8. Однако бериллий еще одно чрезвычайно нестабильное ядро: даже в условиях нашей сегодняшней Вселенной оно существует менее нескольких сотых триллионной доли секунды. Образовавшись, оно тут же распадается на два ядра гелия-4.

Конечно, что-нибудь дельное и вышло бы, если бы три ядра гёлия-4 встретились в результате «трехходового» столкновения и пристали друг к другу. Но надежда на то, что это случится в среде, где гелий-4 окружен преобладающим над ним водородом-1, слишком мала, чтобы это принять в расчет.

Следовательно, к тому времени, когда Вселенная расширилась и остыла до точки, при которой образование сложных ядер закончилось, в изобилии оказываются только водород-1 и гелий-4. Если остаются свободные нейтроны, они распадаются на протоны (водород-1) и электроны. Никаких тяжелых атомов не образуется.

В такой Вселенной облака водородно-гелиевого газа распадаются на галактического размера массы, и последние сгущаются в звезды и гигантские планеты. В итоге и звезды, и гигантские планеты почти сплошь состоят из водорода и гелия. И есть ли смысл беспокоиться о каких-то тяжелых атомах, если они составляют только 3 % массы и менее 1 % количества существующих атомов?

Есть смысл! Эти 3 % должны быть объяснены. Мы не должны пренебрегать ничтожным количеством тяжелых атомов в звездах и гигантских планетах, потому что такая планета, как Земля, состоит почти исключительно из тяжелых атомов. Больше того, в человеческом теле и вообще в живых существах водород составляет лишь 10 % массы, гелий и вовсе отсутствует. Все остальные 90 % массы - это тяжелые атомы.

Другими словами, если бы Вселенная вскоре после Большого взрыва осталась неизменной и процесс образования ядер был бы завершен, планеты, подобные Земле, да и сама жизнь на ней, в известной форме были бы совершенно невозможны.

Прежде чем нам с вами появиться в этом мире, сначала должны были сложиться тяжелые атомы. Но как?

УТЕЧКА ИЗ ЗВЕЗД

В сущности, для нас это уже не загадка, так как ранее мы уже беседовали о том, как в недрах звезд происходит образование ядер. В нашем Солнце, например в центральных его областях, водород непрерывно преобразуется в гелий (водородный синтез, который служит Солнцу источником его энергии. Водородный синтез осуществляется и во всех других звездах главной последовательности).

Если б это было единственно возможным превращением и этому превращению суждено было длиться неопределенно долго с нынешней его скоростью, то весь водород был бы синтезирован и Вселенная состояла бы из чистого гелия в течение примерно 500 млрд. лет (30 - 40-кратный возраст нашей Вселенной). И все же непонятно появление массивных атомов.

Массивные атомы, как мы теперь знаем, зарождаются в звездном ядре. Но они зарождаются только тогда, когда такой звезде приходит время оставить главную последовательность. К этому климактерическому моменту ядро становится таким плотным и горячим, что ядра гелия-4 ударяются друг о друга с величайшей скоростью и частотой. Время от времени три ядра гелия-4 соударяются и смыкаются в одно устойчивое ядро, состоящее из шести протонов и шести нейтронов. Это углерод-12.

Каким же образом тройное столкновение может произойти в сердцевине звезды сейчас, а не в период непосредственно за Большим взрывом?

Что ж, в ядрах звезд, готовящихся выйти из главной последовательности, температура достигает приблизительно 100 000 000 °C при огромном давлении. Такие температуры и давления присущи и очень молодой Вселенной. Но у сердцевины звезды есть одно важное преимущество: тройному столкновению гелия-4 гораздо легче произойти, если в сердцевине звезды нет никаких других ядер, кроме ядер водорода-1, отгружающих ядра гелия-4.

Значит, тяжелые ядра образуются в недрах звезд на протяжении всей истории Вселенной, несмотря на то что такие ядра не были образованы непосредственно после Большого взрыва. Более того, и сегодня, и в будущем в сердцевинах звезд будут образовываться тяжелые ядра. И не только ядра углерода, но и все остальные массивные ядра, включая железо, которое, как было сказано, есть конец нормальных процессов синтеза в звездах.

И все же остаются два вопроса: 1) как тяжелые ядра, возникнув в центрах звезд, распространяются во Вселенной таким образом, что находятся и на Земле, и в нас самих? 2) как ухитряются сформироваться элементы с более массивными ядрами, чем ядра железа? Ведь самое массивное устойчивое ядро железа - это железо-58, состоящее из 26 протонов и 32 нейтронов. И все же на Земле есть еще более тяжелые ядра, вплоть до урана-238, имеющего 92 протона и 146 нейтронов.

Давайте сначала рассмотрим первый вопрос. Существуют ли процессы, способствующие распространению звездного материала во Вселенной?

Существуют. И некоторые из них мы можем ясно почувствовать, изучая наше собственное Солнце.

Невооруженному глазу (с необходимыми предосторожностями) Солнце может показаться спокойным, лишенным особых примет ярким шаром, но мы знаем, что оно находится в состоянии вечного шторма. Огромные температуры в его недрах вызывают конвективные движения в верхних слоях (как в котелке с водой, который собирается закипеть). Солнечное вещество непрерывно то здесь, то там поднимается, взламывая поверхность, поэтому поверхность Солнца покрыта «гранулами», являющимися для него конвективными столбами. (Такая гранула выглядит на фотографиях солнечной поверхности совсем маленькой, на самом же деле она имеет площадь приличного американского или европейского государства.)

Конвективный материал по мере своего подъема расширяется и остывает и, оказавшись на поверхности, стремится снова уйти вниз, чтобы дать место новому, более горячему потоку.

Этот вечный круговорот не останавливается ни на мгновение, он помогает переносу тепла от ядра к поверхности Солнца. С поверхности энергия высвобождается в пространство в виде излучения, большая часть его - свет, который мы видим и от которого зависит сама жизнь на Земле.

Процесс конвекции иногда может привести к чрезвычайным событиям на поверхности светила, когда в пространство не только уходит излучение, но и выбрасываются целые груды настоящего солнечного вещества.

В 1842 г. в Южной Франции и в Северной Италии наблюдали полное затмение Солнца. Тогда затмения редко изучались подробно, так как они обычно проходили в районах, удаленных от крупных астрономических обсерваторий, а проделывать большие расстояния с полным грузом специального оборудования было совсем не просто. Но затмение 1842 г. прошло вблизи астрономических центров Западной Европы, и астрономы со своими инструментами все собрались туда.

Впервые было замечено, что вокруг солнечного обода существуют какие-то раскаленные, багрового цвета, объекты, которые стали отчетливо видны, когда диск Солнца был закрыт Луной. Это походило на струи солнечного материала, выстреливаемого в пространство, и огненные языки эти получили название «протуберанцы».

Какое-то время астрономы еще колебались относительно того, чему принадлежат эти протуберанцы - Луне или Солнцу, но в 1851 г. произошло еще одно затмение, на этот раз наблюдаемое в Швеции, и тщательное наблюдение показало, что протуберанцы - это явление, солнечное, а Луна к ним не имеет никакого отношения.

С тех пор протуберанцы стали изучаться регулярно, и теперь их можно наблюдать с помощью соответствующих инструментов в любое время. Для этого не нужно ждать полного затмения. Некоторые протуберанцы вздымаются мощной дугой и достигают высоты десятков тысяч километров над поверхностью Солнца. Другие взрывоподобно взлетают вверх со скоростью 1300 км/с. Хотя протуберанцы - это наиболее эффектное явление, наблюдаемое на поверхности Солнца, они все же не несут в себе наибольшей энергии.

В 1859 г. английский астроном Ричард Кэррингтон (1826–1875) заметил звездообразную точку света, вспыхнувшую на солнечной поверхности, которая горела в течение пяти минут и затем пропала. Это было первое зафиксированное наблюдение того, что мы теперь называем солнечной вспышкой. Сам же Кэррингтон думал, что на Солнце упал крупный метеорит.

Наблюдение Кэррингтона не привлекло к себе внимания, пока американский астроном Джордж Хэйл не изобрел в 1926 г. спектрогелиоскоп. Это дало возможность наблюдать Солнце в свете особых длин волн. Солнечные вспышки заметно богаты некоторыми длинами световых волн, и, когда Солнце рассматривают в волнах этой длины, вспышки видны очень ярко.

Теперь мы знаем, что солнечные вспышки - дело обычное, они связаны с солнечными пятнами, и, когда на Солнце много пятен, маленькие вспышки бывают через каждые несколько часов, а более крупные - через несколько недель.

Солнечные вспышки - это взрывы высокой энергии на солнечной поверхности, и те участки поверхности, которые вспыхивают, гораздо горячее, чем окружающие их другие участки. Вспышка, охватывающая хотя бы тысячную часть поверхности Солнца, может послать больше радиации высокой энергии (ультрафиолетового излучения, рентгеновских и даже гамма-лучей), чем послала бы вся обычная поверхность Солнца.

Хотя протуберанцы выглядят очень внушительно и могут существовать несколько дней, Солнце теряет через них очень мало материи. Совсем другое дело вспышки. Они менее заметны, многие из них длятся какие-то минуты, даже крупнейшие из них полностью исчезают через пару часов, однако они обладают такой высокой энергией, что выстреливают материю в космос; эта материя навсегда потеряна для Солнца.

Это начали понимать в 1843 г., когда немецкий астроном Самуил Генрих Швабе (1789–1875), ежедневно наблюдавший за Солнцем в течение семнадцати лет, сообщил, что число солнечных пятен на его поверхности увеличивается и уменьшается за период примерно в одиннадцать лет.

В 1852 г. английский физик Эдвард Сабин (1788–1883) заметил, что возмущения магнитного поля Земли («магнитные бури») возникают и ослабевают одновременно с циклом солнечных пятен.

Сначала это было лишь статистическим заявлением, ибо никто не знал, какая тут может быть связь. Однако со временем, когда начали понимать энергетическую природу солнечных вспышек, связь обнаружилась. Через два дня после того, как близ центра солнечного диска произошло извержение большой солнечной вспышки (она, таким образом, была обращена прямо к Земле), компасные стрелки на Земле пошли вразброд, а северное сияние приняло совершенно необыкновенный вид.

Это двухдневное ожидание было исполнено большого смысла. Если бы названные эффекты были вызваны радиацией Солнца, то промежуток времени между вспышкой и ее последствиями составил бы восемь минут: радиация Солнца летит к Земле со скоростью света. Но задержка в два дня означала: каков бы ни был «возмутитель спокойствия», вызывающий эти эффекты, он должен двигаться от Солнца к Земле со скоростью примерно 300 км/ч. Конечно, тоже быстро, но никак не соизмеримо со скоростью света. Такую скорость можно ожидать от субатомных частиц. Эти частицы, выброшенные в результате солнечных событий в направлении Земли, несли электрические заряды и, проходя Землю, должны были именно так повлиять на стрелки компасов и на северное сияние. Когда была понята и подхвачена идея субатомных частиц, выбрасываемых Солнцем, стала проясняться еще одна особенность Солнца.

Когда Солнце оказывается в состоянии полного затмения, то простым глазом можно видеть вокруг него свечение жемчужного цвета, в центре, на месте Солнца, - черный диск мутноватой Луны. Это свечение (или светимость) - солнечная корона, получившая свое название от латинского слова corona - венец (корона окружает Солнце как бы сияющим венцом, или ореолом).

Упомянутое солнечное затмение 1842 г. привело к началу научного изучения протуберанцев. Тогда впервые тщательно была исследована и корона. Оказалось, что она тоже принадлежит Солнцу, а не Луне. С 1860 г. для исследований короны была привлечена фотография, а позднее и спектроскопия.

В 1870 г. в период солнечного затмения в Испании американский астроном Чарлз Янг (1834–1908) впервые изучил спектр короны. В спектре он обнаружил ярко-зеленую линию, которая не соответствовала позиции ни одной известной линии ни одного из известных элементов. Были открыты и другие странные линии, и Янг предположил, что они представляют собой какой-то новый элемент, и назвал его «коронием».

Какая польза от этого «корония», только и всего, что существует какая-то спектральная линия. До тех пор никакая, пока не описана была природа строения атома. Оказалось, что каждый атом состоит из тяжелого ядра в центре, окруженного одним или несколькими легкими электронами на периферии. Всякий раз, как электрон отрывается от атома, спектральные линии, производимые этим атомом, изменяются. Химики могли разобрать спектр атомов, от которых ушли два-три электрона, но техника для удаления большого числа электронов и изучения спектра при этих условиях им была пока недоступна.

В 1941 г. Бенгт Эдлен сумел показать, что «короний» совсем не новый элемент. Обыкновенные элементы - железо, никель и кальций оставляют точно такие же линии, если отнять у них дюжину электронов. Значит, «короний» являлся обычным элементом, у которого недоставало многих электронов.

Такой большой дефицит электронов мог быть вызван только исключительно высокими температурами, и Эдлен выдвинул предположение, что солнечная корона должна иметь температуру один или два миллиона градусов. Сначала это было встречено всеобщим недоверием, но в итоге, когда пришел час ракетной техники, было установлено, что солнечная корона излучает рентгеновские лучи, а это могло иметь место лишь при температурах, предсказанных Эдленом.

Итак, корона - это внешняя атмосфера Солнца, непрерывно питаемая веществом, выбрасываемым наружу солнечными вспышками. Корона - чрезвычайно лучистая материя, разреженная настолько, что в одном кубическом сантиметре ее менее миллиарда частиц, а это примерно одна триллионная плотности земной атмосферы на уровне моря.

По сути, это настоящий вакуум. Энергия, выбрасываемая с поверхности Солнца его вспышками, магнитными полями и огромными звуковыми колебаниями от непрестанно ревущих конвективных потоков, распределяется между относительно небольшим количеством частиц. Хотя все тепло, заключенное в короне, невелико (учитывая ее изрядный объем), количество тепла, которым обладает каждая из этих немногих частиц, достаточно высоко, и под измеряемой температурой понимается именно это «тепло на частицу».

Частицы короны - это отдельные атомы, выброшенные наружу из солнечной поверхности, большинство или все электроны которых отняты высокими температурами. Поскольку Солнце состоит в основном из водорода, большинство этих частиц - ядра водорода, или протоны. За водородом в количественном отношении идут ядра гелия. Число всех других более тяжелых ядер совсем ничтожно. И хотя некоторые тяжелые ядра служат причиной знаменитых линий корония, они присутствуют лишь в виде следов.

Частицы короны движутся от Солнца во всех направлениях. По мере их распространения корона занимает все больший и больший объем и становится все более разреженной. В результате свет ее все более ослабевает, пока на каком-то удалении от Солнца он не исчезает совсем.

Однако сам факт, что корона ослабевает до полного исчезновения для глаз наблюдателя, еще не означает, что она не продолжает существовать в виде устремленных в пространство частиц. Американский физик Юджин Паркер (р. 1927) в 1959 г. назвал эти быстрые частицы солнечным ветром.

Солнечный ветер, расширяясь, достигает ближних планет и проходит еще дальше. Пробы, выполненные с помощью ракет, показали, что солнечный ветер обнаружим за пределами орбиты Сатурна и, по-видимому, будет обнаруживаться даже за орбитами Нептуна и Плутона.

Другими словами, все планеты, обращающиеся вокруг Солнца, движутся внутри широчайшей его атмосферы. Однако эта атмосфера настолько разрежена, что не отражается сколько-нибудь ощутимо на движении планет.

И все же солнечный ветер вещь не настолько призрачная, чтобы не проявить себя множеством способов. Частицы солнечного ветра электрически заряжены, и эти частицы, захваченные магнитным полем Земли, образуют «пояса Ван Аллена» зажигают полярное сияние, сбивают с толку компасы и электронное оборудование. Солнечные вспышки на какой-то момент усиливают солнечный ветер и на какое-то время значительно повышают интенсивность этих эффектов.

В окрестностях Земли частицы солнечного ветра проносятся со скоростью 400–700 км/с, а количество их в 1 см 3 варьируется от 1 до 80. Если бы эти частицы ударялись о земную поверхность, они самым вредным образом влияли бы на все живое, к счастью, мы защищены магнитным полем Земли и ее атмосферой.

Количество вещества, теряемого Солнцем через солнечный ветер, - 1 млрд. кг/с. По человеческим меркам ужасно много, для Солнца это сущий пустяк. Солнце находилось на главной последовательности около 5 млрд. лет и будет оставаться на ней еще 5–6 млрд. лет. Если в течение всего этого времени оно теряло и будет терять с ветром свою массу с теперешней скоростью, то общая потеря Солнца за весь срок его жизни как звезды главной последовательности составит 1/5 его массы.

Тем не менее 1/5 массы всякой солидной звезды не является средним количеством, приплюсовываемым к общему запасу вещества, дрейфующего в огромных пространствах между звездами. Это только пример того, как вещество может уходить от звезд и присоединяться к общему запасу межзвездного газа.

Наше Солнце не является в этом смысле чем-то необычным. У нас есть все основания считать, что каждая звезда, еще не закончившая коллапсом, посылает звездный ветер.

Конечно, мы не в состоянии изучать звезды так, как изучаем Солнце, но кое-какие обобщения можно сделать. Есть, например, маленькие холодные красные карлики, которые через неравные промежутки времени внезапно обнаруживают усиление яркости, сопровождаемое побелением света. Это усиление длится от нескольких минут до часа и обладает такими особенностями, что его вполне можно принять за вспышку на поверхности маленькой звезды.

Эти красные карлики поэтому и называют вспыхивающими звездами.

Вспышка по величине своей менее слабая, чем солнечная, на маленькой звезде приобретет эффект гораздо более заметный. Если достаточно крупная вспышка способна увеличить сияние Солнца на 1 %, то такой же вспышки будет достаточно, чтобы усилить свет тусклой звезды в 250 раз.

В итоге вполне может статься, что красные карлики шлют звездный ветер весьма внушительного свойства.

Некоторые звезды, вероятно, посылают необычайно сильный звездный ветер. Красные гиганты, к примеру, имеют непомерно растянутую структуру, крупнейшие из них в диаметре в 500 раз больше Солнца. Отсюда их поверхностная гравитация относительно мала, так как крупная масса огромного красного гиганта едва уравновешена необычно большим расстоянием от центра к поверхности. Кроме того, красные гиганты приближаются к концу своего существования и закончат его коллапсом. Поэтому они чрезвычайно турбулентны.

Можно отсюда предположить, что мощные вихри уносят звездную материю вопреки слабому поверхностному притяжению.

Большой красный гигант Бетельгейзе достаточно близок к нам, и астрономы в состоянии собрать о нем кое-какие данные. Например, считается, что звездный ветер Бетельгейзе в миллиард раз сильнее, чем солнечный. Даже учитывая, что масса Бетельгейзе в 16 раз больше массы Солнца, эта масса при такой скорости расхода может растаять полностью примерно через миллион лет (если не коллапсирует много раньше).

По-видимому, мы можем предположить, что солнечный ветер нашего светила не слишком далек от средней интенсивности всех звездных ветров вообще. Если мы допустим, что в нашей галактике имеется 300 млрд. звезд, то общая масса, потерянная через звездный ветер, будет равняться З Х 1020 кг/с.

Это значит, что каждые 200 лет от звезд в межзвездное пространство уходит количество вещества, равное массе Солнца. Приняв, что нашей Галактике 15 млрд. лет и что солнечные ветры на протяжении этого времени «дули» одинаково, получим, что общая масса вещества, перенесенного от звезд в пространство, равна массе 75 млн. звезд, как наше Солнце, или приблизительно 1/3 массы Галактики.

Но звездные ветры берут начало с поверхностных слоев звезд, а эти слои целиком (или почти целиком) состоят из водорода и гелия. Поэтому звездные ветры целиком (или почти целиком) содержат те же водород и гелий и никаких тяжелых ядер в галактическую смесь не привносят.

Тяжелые ядра образуются в центре звезды и, будучи далеки от звездной поверхности, при образовании звездного ветра остаются недвижимы.

Когда в верхних слоях звездной структуры имеются какие-то следы тяжелых ядер (что имеет место у нас на Солнце), звездный ветер, естественно, включает эти немногие ядра. Тяжелые ядра изначально не были образованы в недрах звезд, но появились там, когда звезда уже сформировалась. Они возникли от действия какого-то внешнего источника, который нам предстоит найти.

ВЫХОД ЧЕРЕЗ КАТАСТРОФУ

Если звездные ветры - это не тот механизм, благодаря которому тяжелые ядра переносятся из центра звезды во внешнее пространство, тогда обратимся к бурным событиям, происходящим, когда звезда покидает главную последовательность.

Здесь мы сразу же должны вычеркнуть большинство звезд.

Примерно 75–80 % существующих звезд много меньше Солнца. Они остаются в главной последовательности где-то от 20 до 200 млрд. лет, в зависимости от того, насколько они малы, а это значит, что ни одна из мелких звезд, существующих ныне, еще не покидала главной последовательности. Даже самые старые из них, образовавшиеся на заре Вселенной в течение первого миллиарда лет после Большого взрыва, еще не успели израсходовать свое водородное горючее до того предела, когда они должны будут оставить главную последовательность.

Кроме того, когда маленькая звезда в самом деле покидает главную последовательность, она делает это без лишнего шума. Насколько мы знаем, чем меньше звезда, тем спокойнее она покидает эту последовательность. Маленькая звезда (как в общем и все звезды), расширяясь, превратится в красный гигант, но в данном случае это расширение приведет к образованию небольшого красного гиганта. Он, вероятно, проживет значительно дольше, чем другие, более крупные и заметные, и в конце концов, коллапсируя, более или менее спокойно превратится в белый карлик, конечно, не такой плотный, как Сириус В.

Тяжелые элементы, образовавшиеся в глубинах маленькой звезды (в основном углерод, азот и кислород), оставаясь в ее ядре в течение ее существования в главной последовательности, будут оставаться там и после превращения звезды в белый карлик. Ни при каких обстоятельствах не перейдут они в хранилище межзвездного газа более чем в ничтожном количестве. За исключением очень редких случаев, тяжелые элементы, возникшие в маленьких звездах, остаются в этих звездах неопределенно долго.

Звезды, по массе равные Солнцу (а таких 10–20 %), коллапсируют и превращаются в белые карлики, пробыв на главной последовательности всего от 5 до 15 млрд. лет. Наше Солнце, которое должно находиться в главной последовательности около 10 млрд. лет, все еще находится на ней, потому что оно образовалось только 5 млрд. лет назад.

Солнцеобразные звезды, возрастом старше нашего Солнца, к настоящему дню, пожалуй, давно покинули главную последовательность. То же самое произошло и с другими такими же звездами, которые возникли еще в младенчестве нашей Вселенной. Звезды, равные по массе Солнцу, образуют более крупные красные гиганты, чем маленькие звезды, и эти красные гиганты, достигнув точки превращения в белый карлик, коллапсируют более бурно, чем эти звезды. Энергия коллапса сдувает верхние покровы звезды и уносит их в пространство, образуя планетарную туманность описанного ранее типа.

Расширяющийся заряд газа, образовавшийся при коллапсе солнцеобразной звезды, может содержать от 10 до 20 % ее первоначальной массы. Однако эта материя уносится с наружных областей звезды, и, даже когда такие звезды стоят на грани коллапса, эти области, в сущности, не что иное, как смесь водорода с гелием.

Даже тогда, когда в результате турбулентности звезды, стоящей на точке коллапса, тяжелые ядра из ее недр выносятся на поверхность и выбрасываются в космос как часть газового потока, все равно это крошечная, едва заметная часть тех тяжелых ядер, что существуют в межзвездных газовых облаках.

Но раз уж мы остановились на том, как образуются белые карлики, уместен вопрос: а что происходит в тех особых случаях, когда белый карлик не означает конец, но служит фактором распределения вещества в космосе?

Ранее в этой книге мы говорили о белых карликах как о части тесной двойной системы, способной наращивать материю за счет звезды-компаньона, приближающейся к стадии красного гиганта. Время от времени часть этой материи на поверхности белого карлика охватывается ядерной реакцией и высвобождающаяся огромная энергия, с силой выбрасывая в космос продукты синтеза, заставляет его вспыхивать с яркостью новой.

Но материал, наращиваемый белым карликом, это в основном водород и гелий из наружных слоев раздувающегося красного гиганта. Реакция синтеза превращает водород в гелий, и в космос при взрыве взлетает именно облако гелия.

Значит, и в этом последнем случае если какие-то тяжелые ядра и поступили от звезды-компаньона или образовались в процессе синтеза, то число их так ничтожно, что ими не объяснить того множества тяжелых ядер, что рассеяно в межзвездных облаках.

С чем же мы остаемся?

Единственный возможный источник тяжелых ядер - это сверхновая.

Сверхновая типа 1, как я ранее объяснял, возникает на той же почве, на какой возникают обычные новые: белый карлик получает материю от близрасположенного компаньона, собирающегося стать красным гигантом. Разница в том, что здесь белый карлик стоит у предела массы Чандрасекара, поэтому добавляемая масса в конце концов выводит его за этот предел. Белый карлик обречен на коллапс. При этом в нем возникает мощнейшая ядерная реакция и он взрывается.

Вся его структура, равная по массе 1,4 массы Солнца, разлетается в прах и превращается в облако расширяющегося газа.

Некоторое время мы наблюдаем его как сверхновую, но это излучение, очень сильное в первый момент, постепенно исчезает. Остается только облако газа, которое расширяется миллионы лет, пока не сольется с общим фоном межзвездного газа.

При взрыве белого карлика в космос рассеивается огромное количество углерода, азота, кислорода и неона (из всех тяжелых ядер наиболее распространенных элементов). В ходе самого взрыва происходит дальнейшая ядерная реакция, в результате которой образуются небольшие количества ядер еще более тяжелых, чем неон. Разумеется, лишь очень немногие белые карлики достаточно массивны и достаточно близки к большой звезде-компаньону, чтобы стать сверхновой типа 1, но на протяжении 14 млрд. лет жизни Галактики таких взрывов было так много, что ими с лихвой можно объяснить значительное количество тяжелых ядер, имеющихся в межзвездном газе.

Остальные тяжелые ядра существуют в межзвездной среде как результат эволюции сверхновых типа 2. Речь идет, как было сказано, о массивных звездах, которые в 10, 20 и даже в 60 раз тяжелее Солнца.

На этапе существования звезд в виде красных гигантов в их ядрах происходит ядерный синтез, продолжающийся до тех пор, пока там не начнут во множестве образовываться ядра железа. Образование железа - это тупик, за которым ядерный синтез не может больше существовать как устройство, производящее энергию. Поэтому звезда переживает коллапс.

Хотя ядро звезды содержит в последовательно более глубоких слоях тяжелые ядра, вплоть до ядер железа, внешние области звезды все еще имеют внушительные количества нетронутого водорода, ни разу не находившегося в условиях высоких температур и давлений, которые могли бы принудить его вступить в ядерную реакцию.

Коллапс гигантской звезды настолько стремителен, что она испытывает резкое, катастрофическое возрастание и температуры и давления. Весь водород (и гелий тоже), существовавший до сих пор безмятежно, теперь вступает в реакцию, причем вступает весь сразу. В результате происходит колоссальный взрыв, который мы наблюдаем с Земли как сверхновую типа 2.

Энергия, высвобождаемая при этом, может идти и действительно идет на ядерные реакции, способные образовать ядра более тяжелые, чем ядра железа. Такое образование ядер требует притока энергии, но в разгар неистовства сверхновой энергии не занимать… Так происходит образование ядер вплоть до урана и тяжелее. Достаточно энергии и для образования радиоактивных (т. е. неустойчивых) ядер, которые со временем распадутся.

Фактически все тяжелые ядра, существующие во Вселенной, образовались в результате взрывов сверхновых типа 2.

Конечно, такие массивные звезды, из которых обязательно должна получиться сверхновая типа 2, встречаются не часто. Лишь одна звезда из миллиона, а может быть и того меньше, обладает для этого достаточной массой. Однако это и не такой уж редкий случай, как кажется на первый взгляд.

Таким образом, в нашей Галактике имеются десятки тысяч звезд, являющихся потенциальными сверхновыми типа 2.

Поскольку гигантские звезды могут оставаться в главной последовательности самое большее несколько миллионов лет, мы вправе удивиться: почему же они все давным-давно не взорвались и не исчезли? Дело в том, что новые звезды образуются все время и некоторые из них - звезды с очень большой массой. Сверхновые типа 2, которые мы теперь наблюдаем, - это извержения звезд, образовавшихся всего несколько миллионов лет назад. Сверхновые типа 2, которые произойдут в далеком будущем, станут взрывами крупных звезд, которых еще нет сегодня. Может быть, появятся сверхновые и более грандиозные. Еще сравнительно недавно астрономы были уверены, что звезд с массой в 60 раз больше солнечной вообще, наверное, не существует. Считалось, что такие звезды в ядрах своих будут развивать так много тепла, что моментально взорвутся, несмотря на огромную гравитацию.

Другими словами, они даже никогда бы не смогли и образоваться.

Однако в 80-х годах поняли, что в этих рассуждениях не принимались в расчет некоторые аспекты общей теории относительности Эйнштейна. После того как эти аспекты были учтены в астрономических вычислениях, оказалось, что звезды размером в 100 солнечных диаметров и массой в 2000 раз большей, чем масса Солнца, все еще могут быть устойчивы. Более того, несколько астрономических наблюдений подтвердили, что подобные сверхмассивные звезды действительно существуют.

Естественно, сверхмассивные звезды со временем коллапсировали и взрывались как сверхновые, которые производили гораздо больше энергии и в продолжение гораздо большего времени, чем обычные сверхновые. Эти сверхвзрывы мы, по-видимому, должны рассматривать как сверхновые типа 3.

Примерно в это же время советский астроном В. П. Утробин решил ретроспективно изучить астрономические записи прошлых лет, чтобы найти там сверхновую, которая по природе своей была бы сверхновой типа 3. Он высказал предположение, что сверхновая, обнаруженная в 1901 г. в галактике созвездия Персея, именно тот случай. Вместо того чтобы достичь пика блеска за несколько дней или недель, этой сверхновой для достижения максимума блеска потребовался целый год, после чего она очень медленно угасала, оставаясь на виду девять последующих лет.

Излученная ею суммарная энергия была в 10 раз больше, чем энергия обычной сверхновой. Даже в наше время астрономам это показалось фантастикой, и они были явно озадачены.

Такие сверхтяжелые звезды - явление крайне редкое, но количество тяжелых ядер, которые они вырабатывают, в тысячу раз и более превышает количество ядер, производимых обычными сверхновыми. Это значит, что вклад тяжелых ядер в облака межзвездного газа, вносимый сверхтяжелыми звездами, очень велик. В нашей Галактике за время ее существования было, по-видимому, 300 млн. взрывов всевозможных сверхновых (и аналогичное же количество, с поправкой на разность в размерах, в каждой другой), и этого вполне достаточно, чтобы объяснить запасы тяжелых ядер в межзвездном газе, в наружных слоях обычных звезд (и в дополнение к нашей планетной системе - в любых планетах).

Теперь вы видите, что фактически вся Земля и все мы почти полностью состоим из атомов, образовавшихся в недрах звезд (отличных от нашего Солнца) и рассеянных в Космосе при ранних взрывах сверхновых. Мы не можем указать на отдельные атомы и сказать, на какой звезде они родились и когда именно их выбросило в Космос, но мы знаем, что они зародились на какой-то отдаленной звезде и пришли к нам вследствие взрыва в отдаленном прошлом.

Мы, и наш мир, таким образом, не только произошли из звезд, но из взрывающихся звезд. Мы произошли из сверхновых!

Примечания:

Внутренняя ближайшая к Земле часть радиационного пояса, «пояса Ван Аллена», формируется протонами и электронами, возникающими при распаде нейтронов, выходящих из верхних слоев атмосферы Земли, - Примеч. ред.

Внутреннее строение звезд

Мы рассматриваем звезду как тело, подверженное действию разных сил. Сила тяготения стремится стягивать вещество звезды к центру, газовое же и световое давления, направленные изнутри, стремятся оттолкнуть его от центра. Так как звезда существует как устойчивое тело, то, следовательно, между борющимися силами есть какое-то равновесие. Для этого температура разных слоев в звезде должна устанавливаться такая, чтобы в каждом слое поток энергии наружу уводил к поверхности всю энергию, возникшую под ним. Энергия образуется в небольшом центральном ядре. Для начального периода жизни звезды ее сжатие является источником энергии. Но лишь до тех пор пока температура не поднимется настолько, что начнутся ядерные реакции.

Формирование звезд и галактик

Материя во Вселенной находится в непрерывном развитии, в самых разнообразных формах и состояниях. Раз меняются формы существования материи, то, следовательно, различные и разнообразные объекты не могли возникнуть все одновременно, а формировались в разные эпохи и поэтому имеют свой определенный возраст, отсчитываемый от начала их зарождения.

Научные основы космогонии были заложены еще Ньютоном, который показал, что вещество в пространстве под действием собственной гравитации разделяется на сжимающиеся куски. Теория образования сгустков вещества, из которых формируются звезды, была развита в 1902 г. английским астрофизиком Дж.Джинсом. Эта теория объясняет и происхождение Галактик. В первоначально однородной среде с постоянной температурой и плотностью может возникнуть уплотнение. Если сила взаимного тяготения в нем превысит силу газового давления, то среда станет сжиматься, а если превалирует газовое давление, то вещество рассеется в пространстве.

Считают, что возраст Метагалактики - 13-15 млрд. лет. Этот возраст не противоречит оценкам возраста наиболее старых звезд и шаровых звездных скоплений в нашей Галактике.

Эволюция звезд

Возникшие в газопылевой среде Галактики сгущения, продолжающие сжиматься под действием собственного тяготения, получили названия протозвезд. По мере сжатия плотность и температура протозвезды повышается, и она начинает обильно излучать в инфракрасном диапазоне спектра. Длительность сжатия протозвезд различна: при массе меньше солнечной - сотни миллионов лет, а у массивных - всего лишь сотни тысяч лет. Когда температура в недрах протозвезды повысится до нескольких миллионов Кельвинов, в них начинаются термоядерные реакции превращения водорода в гелий. При этом выделяется огромная энергия, препятствующая дальнейшему сжатию и разогревающая вещество до самосвечения - протозвезда превращается в обычную звезду. Итак, стадию сжатия сменяет стационарная стадия, сопровождающаяся постепенным “выгоранием” водорода. В стационарной стадии звезда проводит большую часть своей жизни. Именно в этой стадии эволюции находятся звезды, которые располагаются на главной последовательности “спектр-светимость”. Время пребывания звезды на главной последовательности пропорционально массе звезды, так как от этого зависит запас ядерного горючего, и обратно пропорционально светимости, которая определяет темп расхода ядерного горючего.

Когда весь водород в центральной области превратится в гелий, внутри звезды образуется гелиевое ядро. Теперь уже водород будет превращаться в гелий не в центре звезды, а в слое, прилегающем к очень горячему гелиевому ядру. Пока внутри гелиевого ядра нет источников энергии, оно будет постоянно сжиматься и при этом еще более разогреваться. Сжатие ядра приводит к более бурному выделению ядерной энергии в тонком слое у границы ядра. У более массивных звезд температура ядра при сжатии становится выше 80 млн. Кельвинов, и в нем начинаются термоядерные реакции превращения гелия в углерод, а потом и в другие более тяжелые химические элементы. Выходящая из ядра и его окрестностей энергия вызывает повышение газового давления, под действием которого фотосфера расширяется. Энергия, приходящая к фотосфере из недр звезды, распространяется теперь на большую площадь, чем раньше. В связи с этим температура фотосферы понижается. Звезда сходит с главной последовательности, постепенно превращаясь в красного гиганта или сверхгиганта в зависимости от массы, и становится старой звездой. Проходя стадию желтого сверхгиганта, звезда может оказаться пульсирующей, то есть физической переменной звездой, и остаться такой в стадии красного гиганта. Раздувшаяся оболочка звезды небольшой массы уже слабо притягивается ядром и, постепенно удаляясь от него, образует планетарную туманность. После окончательного рассеяния оболочки остается лишь горячее ядро звезды - белый карлик.

Иная судьба у более массивных звезд. Если масса звезды примерно вдвое превышает массу Солнца, то такие звезды на последних этапах своей эволюции теряют устойчивость. В частности, они могут взорваться как сверхновые, а затем катастрофически сжаться до размеров шаров радиусом в несколько километров, то есть превратиться в нейтронные звезды.

Звезда, масса которой более чем вдвое превышает массу Солнца, потеряв равновесие и начав сжиматься, либо превратится в нейтронную звезду, либо вообще не сможет достигнуть устойчивого состояния. В процессе неограниченного сжатия она, вероятно, способна превратиться в черную дыру.

Белые карлики

Белые карлики - необычные, очень маленькие плотные звезды с высокими поверхностными температурами. Главная отличительная черта внутреннего строения белых карликов - гигантские по сравнению с нормальными звездами плотности. Из-за громадной плотности газ в недрах белых карликов находится в необычном состоянии - вырожденном. Свойства такого вырожденного газа совсем не похожи на свойства обычных газов. Его давление, например, практически не завит от температуры. Устойчивость белого карлика поддерживается тем, что сжимающей его громадной силе тяготения противостоит давление вырожденного газа в его недрах.

Белые карлики находятся на конечной стадии эволюции звезд не очень больших масс. Ядерных источников в звезде уже нет, и она еще очень долго светит, медленно остывая. Белые карлики устойчивы, если их масса не превышает примерно 1,4 массы Солнца.

Нейтронные звезды

Нейтронные звезды - очень маленькие, сверхплотные небесные тела. Их диаметр в среднем не больше нескольких десятков километров. Нейтронные звезды образуются после исчерпания источников термоядерной энергии в недрах обычной звезды, если ее масса к этому моменту превышает 1,4 массы Солнца. Поскольку источник термоядерной энергии отсутствует, устойчивое равновесие звезды становится невозможным и начинается катастрофическое сжатие звезды к центру - гравитационный коллапс. Если исходная масса звезды не превышает некоторой критической величины, то коллапс в центральных частях останавливается и образуется горячая нейтронная звезда. Процесс коллапса занимает доли секунды. За ним может последовать либо натекание оставшейся оболочки звезды на горячую нейтронную звезду с испусканием нейтрино, либо сброс оболочки за счет термоядерной энергии “непрогоревшего” вещества или энергии вращения. Такой выброс происходит очень быстро и с Земли он выглядит как вспышка сверхновой звезды. Наблюдаемые нейтронные звезды - пульсары часто связаны с остатками сверхновых звезд. Если масса нейтронной звезды превышает 3-5 массы Солнца, равновесие ее станет невозможным, и такая звезда будет представлять собой черную дыру. Очень важные характеристики нейтронных звезд - вращение и магнитное поле. Магнитное поле может быть в миллиарды и триллионы раз сильнее магнитного поля Земли.

Что является источником солнечной энергии? Какова природа процессов, в ходе которых производится огромное количество энергии? Сколько времени будет еще светить Солнце?

Первые попытки ответить на эти вопросы были сделаны астрономами в середине ХIX века, после формулирования физиками закона сохранения энергии.

Роберт Майер предположил, что Солнце светит за счет постоянной бомбардировки поверхности метеоритами и метеорными частицами. Эта гипотеза была отвергнута, так как простой расчет показывает, что для поддержания светимости Солнца на современном уровне необходимо, чтобы на него за каждую секунду выпадало 2*1015 кг метеорного вещества. За год это составит 6*1022 кг, а за время существования Солнца, за 5 миллиардов лет – 3*1032 кг. Масса Солнца М = 2*1030 кг, поэтому за пять миллиардов лет на Солнце должно было выпасть вещества в 150 раз больше массы Солнца.

Вторая гипотеза была высказана Гельмгольцем и Кельвином также в середине ХIX века. Они предположили, что Солнце излучает за счет сжатия на 60–70 метров ежегодно. Причина сжатия – взаимное притяжение частиц Солнца, именно поэтому данная гипотеза получила название контракционной. Если сделать расчет по данной гипотезе, то возраст Солнца будет не больше 20 миллионов лет, что противоречит современным данным, полученным по анализу радиоактивного распада элементов в геологических образцах земного грунта и грунта Луны.

Третью гипотезу о возможных источниках энергии Солнца высказал Джеймс Джинс в начале ХХ века. Он предположил, что в недрах Солнца содержатся тяжелые радиоактивные элементы, которые самопроизвольно распадаются, при этом излучается энергия. Например, превращение урана в торий и затем в свинец, сопровождается выделением энергии. Последующий анализ этой гипотезы также показал ее несостоятельность; звезда, состоящая из одного урана, не выделяла бы достаточно энергии для обеспечения наблюдаемой светимости Солнца. Кроме того, существуют звезды, по светимости во много раз превосходящие светимость нашей звезды. Маловероятно, что в тех звездах запасы радиоактивного вещества будут также больше.

Самой вероятной гипотезой оказалась гипотеза синтеза элементов в результате ядерных реакций в недрах звезд.

В 1935 году Ханс Бете выдвинул гипотезу, что источником солнечной энергии может быть термоядерная реакция превращения водорода в гелий. Именно за это Бете получил Нобелевскую премию в 1967 году.

Химический состав Солнца примерно такой же, как и у большинства других звезд. Примерно 75 % – это водород, 25 % – гелий и менее 1 % – все другие химические элементы (в основном, углерод, кислород, азот и т.д.). Сразу после рождения Вселенной «тяжелых» элементов не было совсем. Все они, т.е. элементы тяжелее гелия и даже многие альфа-частицы, образовались в ходе «горения» водорода в звездах при термоядерном синтезе. Характерное время жизни звезды типа Солнца десять миллиардов лет.

Основной источник энергии – протон-протонный цикл – очень медленная реакция (характерное время 7,9*109 лет), так как обусловлена слабым взаимодействием. Ее суть состоит в том, что из четырех протонов получается ядро гелия. При этом выделяются пара позитронов и пара нейтрино, а также 26,7 МэВ энергии. Количество нейтрино, излучаемое Солнцем за секунду, определяется только светимостью Солнца. Поскольку при выделении 26,7 МэВ рождается 2 нейтрино, то скорость излучения нейтрино: 1,8*1038 нейтрино/с.

Прямая проверка этой теории – наблюдение солнечных нейтрино. Нейтрино высоких энергий (борные) регистрируются в хлор-аргонных экспериментах (эксперименты Дэвиса) и устойчиво показывают недостаток нейтрино по сравнению с теоретическим значением для стандартной модели Солнца. Нейтрино низких энергий, возникающие непосредственно в рр-реакции, регистрируются в галлий-германиевых экспериментах (GALLEX в Гран Сассо (Италия – Германия) и SAGE на Баксане (Россия – США)); их также «не хватает».

По некоторым предположениям, если нейтрино имеют отличную от нуля массу покоя, возможны осцилляции (превращения) различных сортов нейтрино (эффект Михеева – Смирнова – Вольфенштейна) (существует три сорта нейтрино: электронное, мюонное и тауонное нейтрино). Т.к. другие нейтрино имеют гораздо меньшие сечения взаимодействия с веществом, чем электронное, наблюдаемый дефицит может быть объяснен, не меняя стандартной модели Солнца, построенной на основе всей совокупности астрономических данных.

Каждую секунду Солнце перерабатывает около 600 миллионов тонн водорода. Запасов ядерного топлива хватит еще на пять миллиардов лет, после чего оно постепенно превратится в белый карлик.

Центральные части Солнца будут сжиматься, разогреваясь, а тепло, передаваемое при этом внешней оболочке, приведет к ее расширению до размеров, чудовищных по сравнению с современными: Солнце расширится настолько, что поглотит Меркурий, Венеру и будет тратить «горючее» в сто раз быстрее, чем в настоящее время. Это приведет к увеличению размеров Солнца; наша звезда станет красным гигантом, размеры которого сравнимы с расстоянием от Земли до Солнца! Жизнь на Земле исчезнет или найдет пристанище на внешних планетах.

Мы, конечно, будем заранее поставлены в известность о таком событии, поскольку переход к новой стадии займет примерно 100–200 миллионов лет. Когда температура центральной части Солнца достигнет 100 000 000 К, начнет сгорать и гелий, превращаясь в тяжелые элементы, и Солнце вступит в стадию сложных циклов сжатия и расширения. На последней стадии наша звезда потеряет внешнюю оболочку, центральное ядро будет иметь невероятно большую плотность и размеры, как у Земли. Пройдет еще несколько миллиардов лет, и Солнце остынет, превратившись в белый карлик.

2002-01-18T16:42+0300

2008-06-04T19:55+0400

https://сайт/20020118/54771.html

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

Термоядерные реакции, происходящие на солнце

(Тер.Инк. N03-02, 18/01/2002) Вадим Прибытков, физик-теоретик, постоянный корреспондент Терры Инкогнита. Ученые прекрасно понимают, что термоядерные реакции, происходящие на Солнце, в целом заключаются в превращении водорода в гелий и в более тяжелые элементы. Но вот как совершаются эти превращения, абсолютной ясности нет, точнее, господствует полная неясность: отсутствует самое главное первоначальное звено. Поэтому придумана фантастическая реакция соединения двух протонов в дейтерий с выбросом позитрона и нейтрино. Однако такая реакция в действительности невозможна, потому что между протонами действуют мощные силы отталкивания. ----Что же в действительности происходит на Солнце? Первая реакция заключается в рождении дейтерия, образование которого происходит при высоком давлении в низкотемпературной плазме при близком соединении двух атомов водорода. В этом случае два водородных ядра на короткий период оказываются почти рядом, при этом они в состоянии совершить захват одного из...

(Тер.Инк. N03-02, 18/01/2002)

Вадим Прибытков, физик-теоретик, постоянный корреспондент Терры Инкогнита.

Ученые прекрасно понимают, что термоядерные реакции, происходящие на Солнце, в целом заключаются в превращении водорода в гелий и в более тяжелые элементы. Но вот как совершаются эти превращения, абсолютной ясности нет, точнее, господствует полная неясность: отсутствует самое главное первоначальное звено. Поэтому придумана фантастическая реакция соединения двух протонов в дейтерий с выбросом позитрона и нейтрино. Однако такая реакция в действительности невозможна, потому что между протонами действуют мощные силы отталкивания.

Что же в действительности происходит на Солнце?

Первая реакция заключается в рождении дейтерия, образование которого происходит при высоком давлении в низкотемпературной плазме при близком соединении двух атомов водорода. В этом случае два водородных ядра на короткий период оказываются почти рядом, при этом они в состоянии совершить захват одного из орбитальных электронов, который и образует с одним из протонов нейтрон.

Аналогичная реакция может протекать и при других условиях, когда протон внедряется в атом водорода. В этом случае также происходит захват орбитального электрона (К-захват).

Наконец может быть и такая реакция, когда на какой-то короткий период сближаются два протона, их совместных сил хватает на то, чтобы захватить пролетающий электрон и образовать дейтерий. Все зависит от температуры плазмы или газа, в которых протекают эти реакции. При этом выделяется 1,4 Мэв энергии.

Дейтерий является основой для протекания последующего цикла реакций, когда два ядра дейтерия образуют тритий с выбросом протона, или гелий-3 с выбросом нейтрона. Обе реакции равновероятны и хорошо известны.

Далее следуют реакции соединения трития с дейтерием, трития с тритием, гелия-3 с дейтерием, гелия-3 с тритием, гелия-3 с гелием-3 с образованием гелия-4. При этом выделяется большее количество протонов и нейтронов. Нейтроны захватываются ядрами гелия-3 и всеми элементами, у которых имеются связки из дейтерия.

Эти реакции подтверждаются и тем, что из Солнца в составе солнечного ветра выбрасывается огромное количество протонов высоких энергий. Самым замечательным во всех этих реакциях является то, что в ходе их не образуется ни позитронов, ни нейтрино. При протекании всех реакций выделяется энергия.

В природе все происходит гораздо проще.

Далее из ядер дейтерия, трития, гелия-3, гелия-4 начинают формироваться более сложные элементы. При этом весь секрет заключается в том, что ядра гелия-4 не могут соединяться между собой непосредственно, потому что они взаимно отталкиваются. Их соединение происходит через связки из дейтерия и трития. Этот момент официальная наука также совершенно не учитывает и сваливает ядра гелия-4 в одну кучу, что невозможно.

Таким же фантастическим, как и официальный водородный цикл, является и так называемый углеродный цикл, придуманный Г.Бете в 1939 г., в ходе которого из четырех протонов образуется гелий-4 и, якобы, также выделяются позитроны и нейтрино.

В природе все происходит гораздо проще. Природа не придумывает, как теоретики, новые частицы, а пользуется лишь теми, которые у нее имеются. Как мы видим, образование элементов начинается с присоединения двумя протонами одного электрона (так называемый К-захват), в результате чего и получается дейтерий. К-захват является единственным методом создания нейтронов и широко практикуется и всеми остальными более сложными ядрами. Квантовая механика отрицает наличие электронов в ядре, но без электронов построить ядра невозможно.