Функциональные ряды. Степенные ряды. Область сходимости ряда. Функциональные ряды область сходимости равномерная сходимость признак вейерштрасса свойства равномерно сходящихся функциональных рядов Найти суммы функциональных рядов примеры
Функциональным рядом называется формально записанное выражение
u 1 (x ) + u 2 (x ) + u 3 (x ) + ... + u n (x ) + ... , (1)
где u 1 (x ), u 2 (x ), u 3 (x ), ..., u n (x ), ... - последовательность функций от независимой переменной x .
Сокращённая запись функционального ряда с сигмой: .
Примерами функциональных рядов могут служить :
(2)
(3)
Придавая независимой переменной x некоторое значение x 0 и подставляя его в функциональный ряд (1), получим числовой ряд
u 1 (x 0 ) + u 2 (x 0 ) + u 3 (x 0 ) + ... + u n (x 0 ) + ...
Если полученный числовой ряд сходится, то говорят, что функциональный ряд (1) сходится при x = x 0 ; если он расходится, что говорят, что ряд (1) расходится при x = x 0 .
Пример 1. Исследовать сходимость функционального ряда
(2) при значениях x
= 1
и x
= - 1
.
Решение. При x
= 1
получим числовой ряд
который сходится по признаку Лейбница. При x = - 1 получим числовой ряд
,
который расходится как произведение расходящегося гармонического ряда на – 1. Итак, ряд (2) сходится при x = 1 и расходится при x = - 1 .
Если такую проверку на сходимость функционального ряда (1) осуществить относительно всех значений независимой переменной из области определения его членов, то точки этой области разобьются на два множества: при значениях x , взятых в одном из них, ряд (1) сходится, а в другом – расходится.
Множество значений независимой переменной, при которых функциональный ряд сходится, называется его областью сходимости .
Пример 2. Найти область сходимости функционального ряда
Решение. Члены ряда определены на всей числовой прямой и образуют геометрическую прогрессию со знаменателем q = sin x . Поэтому ряд сходится, если
и расходится, если
(значения невозможны). Но при значениях и при остальных значениях x . Следовательно, ряд сходится при всех значениях x , кроме . Областью его сходимости служит вся числовая прямая, за исключением этих точек.
Пример 3. Найти область сходимости функционального ряда
Решение. Члены ряда образуют геометрическую прогрессию со знаменателем q =lnx . Поэтому ряд сходится, если , или , откуда . Это и есть область сходимости данного ряда.
Пример 4. Исследовать сходимость функционального ряда
Решение. Возьмём произвольное значение . При этом значении получим числовой ряд
(*)
Найдём предел его общего члена
Следовательно, ряд (*) расходится при произвольно выбранном, т.е. при любом значении x . Область его сходимости – пустое множество.
Равномерная сходимость функционального ряда и её свойства
Перейдём к понятию равномерной сходимости функционального ряда . Пусть s (x ) - сумма этого ряда, а s n (x ) - сумма n первых членов этого ряда. Функциональный ряд u 1 (x ) + u 2 (x ) + u 3 (x ) + ... + u n (x ) + ... называется равномерно сходящимся на отрезке [a , b ] , если для любого как угодно малого числа ε > 0 найдётся такой номер N , что при всех n ≥ N будет выполнятся неравенство
|s (x ) − s n (x )| < ε
для любого x из отрезка [a , b ] .
Приведённое выше свойство можно геометрически иллюстрировать следующим образом.
Рассмотрим график функции y = s (x ) . Построим около этой кривой полосу шириной 2ε n , то есть построим кривые y = s (x ) + ε n и y = s (x ) − ε n (на рисунке ниже они зелёного цвета).
Тогда при любом ε n график функции s n (x ) будет лежать целиком в рассматриваемой полосе. В этой же полосе будут лежать графики всех последующих частичных сумм.
Всякий сходящийся функциональный ряд, который не обладает описанным выше признаком - неравномерно сходящийся.
Рассмотрим ещё одно свойство равномерно сходящихся функциональых рядов:
сумма ряда непрерывных функций, равномерно сходящегося на некотором отрезке [a , b ] , есть функция, непрерывная на этом отрезке .
Пример 5. Определить, непрерывна ли сумма функционального ряда
Решение. Найдём сумму n первых членов этого ряда:
Если x > 0 , то
,
если x < 0 , то
если x = 0 , то
И поэтому .
Наше исследование показало, что сумма данного ряда - разрывная функция. Её график изображён на рисунке ниже.
Признак Вейерштрасса равномерной сходимости функциональных рядов
К признаку Вейерштрасса подойдём через понятие мажоририуемости функциональных рядов . Функциональный ряд
u 1 (x ) + u 2 (x ) + u 3 (x ) + ... + u n (x ) + ...
– возможно, сложное окажется не таким уж и сложным;) Да и заголовок этой статьи тоже лукавит – ряды, о которых сегодня пойдёт речь, скорее, не сложные, а «редкоземельные». Однако от них не застрахованы даже студенты-заочники, и поэтому к данному, казалось бы, дополнительному занятию следует отнестись с максимальной серьёзностью. Ведь после его проработки вы сможете расправиться практически с любым «зверем»!
Начнём с классики жанра:
Пример 1
Во-первых, обратим внимание, что это НЕ степенной ряд (напоминаю, что оный имеет вид ) . И, во-вторых, здесь сразу бросается в глаза значение , которое заведомо не может входить в область сходимости ряда. И это уже маленький успех исследования!
Но всё-таки, как прийти к успеху большому? Спешу вас обрадовать – подобные ряды можно решать точно так же, как и степенные – опираясь на признак Даламбера или радикальный признак Коши!
Решение : значение не входит в область сходимости ряда. Это факт существенный, и его нужно обязательно отметить!
Основой же алгоритм работает стандартно. Используя признак Даламбера, найдём интервал сходимости ряда:
Ряд сходится при . Поднимем модуль наверх:
Сразу проконтролируем «нехорошую» точку: значение не вошло в область сходимости ряда.
Исследуем сходимость ряда на «внутренних» концах интервалов:
если , то
если , то
Оба числовых ряда расходятся, так как не выполнен необходимый признак сходимости .
Ответ : область сходимости:
Выполним небольшую аналитическую проверку. Давайте подставим в функциональный ряд какое-нибудь значение из правого интервала, например, :
– сходится по признаку Даламбера
.
В случае подстановки значений из левого интервала тоже получаются сходящиеся ряды:
если , то .
И, наконец, если , то ряд – действительно расходится.
Пара простеньких примера для разогрева:
Пример 2
Найти область сходимости функционального ряда
Пример 3
Найти область сходимости функционального ряда
Особенно хорошо разберитесь с «новым» модулем – он сегодня встретится 100500 раз!
Краткие решения и ответы в конце урока.
Использованные алгоритмы вроде бы универсальны и безотказны, но на самом деле это не так – для многих функциональных рядов они часто «пробуксовывают», а то и приводят к ошибочным выводам (и такие примеры я тоже рассмотрю) .
Шероховатости начинаются уже на уровне интерпретации результатов: рассмотрим, например, ряд . Здесь в пределе получаем (проверьте самостоятельно) , и по идее нужно дать ответ, что ряд сходится в единственной точке. Однако, точка «заиграна», а значит, наш «пациент» расходится вообще всюду!
А для ряда «очевидное» решение «по Коши» вообще ничего не даёт:
– для ЛЮБОГО значения «икс».
И возникает вопрос, что же делать? Используем метод, которому как раз будет посвящена основная часть урока! Его можно сформулировать следующим образом:
Прямой анализ числовых рядов при различных значениях
Фактически мы уже начали этим заниматься в Примере 1. Сначала исследуем какое-нибудь конкретное «икс» и соответствующий числовой ряд. Напрашивается взять значение :
– полученный числовой ряд расходится.
И это сразу наталкивает на мысль: а что, если то же самое происходит и в других точках?
Проверим-ка необходимый признак сходимости ряда
для произвольного
значения :
Точка учтена выше, для всех же остальных «икс» стандартным приёмом организуем второй замечательный предел :
Вывод : ряд расходится на всей числовой прямой
И это решение – самый что ни на есть рабочий вариант!
На практике функциональный ряд часто приходится сопоставлять с обобщённым гармоническим рядом :
Пример 4
Решение
: прежде всего, разбираемся с областью определения
: в данном случае подкоренное выражение должно быть строго положительным, и, кроме того, должны существовать все члены ряда, начиная с 1-го. Из этого следует то, что:
. При этих значениях получаются условно сходящиеся ряды :
и т.д.
Другие же «икс» не годятся, так, например, при мы получим нелегальный случай , где не существует первых двух членов ряда.
Это всё хорошо, это всё понятно, но остаётся ещё один немаловажный вопрос – как грамотно оформить решение? Я предлагаю схему, которую можно жаргонно назвать «перевод стрелок» на числовые ряды :
Рассмотрим произвольное значение и исследуем сходимость числового ряда . Рутинный признак Лейбница :
1) Данный ряд является знакочередующимся.
2) – члены ряда убывают по модулю. Каждый следующий член ряда по модулю меньше, чем предыдущий: , значит, убывание монотонно.
Вывод: ряд сходится по признаку Лейбница. Как уже отмечалось, сходимость тут условная – по той причине, что ряд – расходится.
Вот так вот – аккуратно и корректно! Ибо за «альфой» мы хитро спрятали все допустимые числовые ряды.
Ответ : функциональный ряд существует и сходится условно при .
Аналогичный пример для самостоятельного решения:
Пример 5
Исследовать сходимость функционального ряда
Примерный образец чистового оформления задания в конце урока.
Вот тебе и «рабочая гипотеза»! – на интервале функциональный ряд сходится!
2) С симметричным интервалом всё прозрачно, рассматриваем произвольные значения и получаем: – абсолютно сходящиеся числовые ряды.
3) И, наконец, «серединка» . Здесь тоже удобно выделить два промежутка.
Рассматриваем произвольное
значение из интервала и получаем числовой ряд:
! Опять же – если трудно , подставляйте какое-нибудь конкретное число, например . Впрочем,… вы же хотели трудностей =)
Для всех значений «эн» выполнено , значит:
– таким образом, по признаку сравнения
ряд сходится вместе с бесконечно убывающей прогрессией .
Для всех значений «икс» из интервала получаем – абсолютно сходящиеся числовые ряды.
Все «иксы» исследованы, «иксов» больше нет!
Ответ : область сходимости ряда:
Надо сказать, неожиданный результат! И ещё следует добавить, что использование признаков Даламбера или Коши здесь однозначно введёт в заблуждение!
Прямая оценка – это «высший пилотаж» математического анализа, но для этого, конечно, требуется опыт, а где-то даже и интуиция.
А может быть кто-то найдёт путь проще? Пишите! Прецеденты, кстати, есть – несколько раз читатели предлагали более рациональные решения, и я с удовольствием их публиковал.
Успешного вам приземления:)
Пример 11
Найти область сходимости функционального ряда
Моя версия решения совсем близко.
Дополнительный хардкор можно найти в Разделе VI (Ряды) сборника Кузнецова (Задачи 11-13). В Интернете есть готовые решения , но здесь я должен вас предостеречь – многие из них неполные, некорректные, а то и вообще ошибочные. И, к слову, это была одна из причин, по которой появилась на свет данная статья.
Давайте подведём итоги трёх уроков и систематизируем наш инструментарий. Итак:
Чтобы найти интервал(ы) сходимости функционального ряда, можно использовать :
1) Признак Даламбера или признак Коши . И если ряд не степенной – проявляем повышенную осторожность, анализируя полученный результат прямой подстановкой различных значений .
2) Признак равномерной сходимости Вейерштрасса . Не забываем!
3) Сопоставление с типовыми числовыми рядами – рулит в общем случае.
После чего исследуем концы найденных интервалов (если нужно) и получаем область сходимости ряда.
Теперь в вашем распоряжении довольно-таки серьёзный арсенал, который позволит справиться практически с любым тематическим заданием.
Желаю успехов!
Решения и ответы:
Пример 2: Решение
: значение не входит в область сходимости ряда.
Используем признак Даламбера:
Ряд сходится при:
Таким образом, интервалы сходимости функционального ряда: .
Исследуем сходимость ряда в конечных точках:
если , то ;
если , то .
Оба числовых ряда расходятся, т.к. не выполнен необходимый признак сходимости.
Ответ : область сходимости:
4.1. Функциональные ряды: основные понятия, область сходимости
Определение 1
. Ряд, члены которого являются функциями одной или
нескольких независимых переменных, определёнными на некотором множестве, называется функциональным рядом
.
Рассмотрим функциональный ряд , члены которого являются функциями одной независимой переменной х
. Сумма первых n
членов ряда является частичной суммой данного функционального ряда. Общий член есть функция от х
, определённая в некоторой области. Рассмотрим функциональный ряд в точке . Если соответствующий числовой ряд сходится, т.е. существует предел частичных сумм этого ряда
(где − сумма числового ряда), то точка называется точкой сходимости
функционального ряда . Если числовой ряд расходится, то точка называется точкой расходимости
функционального ряда.
Определение 2 . Областью сходимости функционального ряда называется множество всех таких значений х , при которых функциональный ряд сходится. Область сходимости, состоящая из всех точек сходимости, обозначается . Отметим, что R.
Функциональный ряд сходится в области , если для любого он сходится как числовой ряд, при этом его сумма будет некоторой функцией . Это так называемая предельная функция последовательности : .
Как находить область сходимости функционального ряда ? Можно использовать признак, аналогичный признаку Даламбера. Для ряда составляем и рассматриваем предел при фиксированном х
:
. Тогда является решением неравенства и решением уравнения (берём только те решения уравнения, в
которых соответствующие числовые ряды сходятся).
Пример 1 . Найти область сходимости ряда .
Решение . Обозначим , . Составим и вычислим предел , тогда область сходимости ряда определяется неравенством и уравнением . Исследуем дополнительно сходимость исходного ряда в точках, являющимися корнями уравнения:
а) если , , то получается расходящийся ряд ;
б) если , , то ряд сходится условно (по
признаку Лейбница, пример 1, лекция 3, разд. 3.1).
Таким образом, область сходимости ряда имеет вид: .
4.2. Степенные ряды: основные понятия, теорема Абеля
Рассмотрим частный случай функционального ряда, так называемый степенной ряд
, где
.
Определение 3 . Степенным рядом называется функциональный ряд вида ,
где − постоянные числа, называемые коэффициентами ряда .
Степенной ряд есть «бесконечный многочлен», расположенный по возрастающим степеням . Любой числовой ряд является
частным случаем степенного ряда при .
Рассмотрим частный случай степенного ряда при :
. Выясним, какой вид имеет
область сходимости данного ряда .
Теорема 1 (теорема Абеля) . 1) Если степенной ряд сходится в точке , то он абсолютно сходится при всяком х , для которого справедливо неравенство .
2) Если же степенной ряд расходится при , то он расходится при всяком х , для которого .
Доказательство . 1) По условию степенной ряд сходится в точке ,
т. е. сходится числовой ряд
(1)
и по необходимому признаку сходимости его общий член стремится к 0, т.е. . Следовательно, существует такое число , что все члены ряда ограничены этим числом:
.
Рассмотрим теперь любое х
, для которого , и составим ряд из абсолютных величин: .
Запишем этот ряд в другом виде: так как , то (2).
Из неравенства
получаем , т.е. ряд
состоит из членов, которые больше соответствующих членов ряда (2). Ряд представляет собой сходящийся ряд геометрической прогрессии со знаменателем , причём , так как . Следовательно, ряд (2) сходится при . Таким образом, степенной ряд абсолютно сходится.
2) Пусть ряд расходится при , иными словами,
расходится числовой ряд . Докажем, что для любого х () ряд расходится. Доказательство ведётся от противного. Пусть при некотором
фиксированном () ряд сходится, тогда он сходится при всех (см. первую часть данной теоремы), в частности, при , что противоречит условию 2) теоремы 1. Теорема доказана.
Следствие
. Теорема Абеля позволяет судить о расположении точки сходимости степенного ряда. Если точка является точкой сходимости степенного ряда, то интервал заполнен точками сходимости; если точкой расходимости является точка , то
бесконечные интервалы заполнены точками расходимости (рис. 1).
Рис. 1. Интервалы сходимости и расходимости ряда
Можно показать, что существует такое число , что при всех
степенной ряд абсолютно сходится, а при − расходится. Будем считать, что если ряд сходится только в одной точке 0, то , а если ряд сходится при всех , то .
Определение 4 . Интервалом сходимости степенного ряда называется такой интервал , что при всех этот ряд сходится и притом абсолютно, а для всех х , лежащих вне этого интервала, ряд расходится. Число R называется радиусом сходимости степенного ряда.
Замечание . На концах интервала вопрос о сходимости или расходимости степенного ряда решается отдельно для каждого конкретного ряда.
Покажем один из способов определения интервала и радиуса сходимости степенного ряда.
Рассмотрим степенной ряд и обозначим .
Составим ряд из абсолютных величин его членов:
и применим к нему признак Даламбера.
Пусть существует
.
По признаку Даламбера ряд сходится, если , и расходится, если . Отсюда ряд сходится при , тогда интервал сходимости: . При ряд расходится, так как .
Используя обозначение , получим формулу для определения радиуса сходимости степенного ряда:
,
где − коэффициенты степенного ряда.
Если окажется, что предел , то полагаем .
Для определения интервала и радиуса сходимости степенного ряда также можно использовать радикальный признак Коши, радиус сходимости ряда определяется из соотношения .
Определение 5 . Обобщенным степенным рядом называется ряд вида
. Его также называют рядом по степеням .
Для такого ряда интервал сходимости имеет вид: , где − радиус сходимости.
Покажем, как находится радиус сходимости для обобщенного степенного ряда.
т.е. , где .
Если , то , и область сходимости R; если , то и область сходимости .
Пример 2 . Найти область сходимости ряда .
Решение . Обозначим . Составим предел
Решаем неравенство: , , следовательно, интервал
сходимости имеет вид: , причём R
= 5. Дополнительно исследуем концы интервала сходимости:
а) , , получаем ряд , который расходится;
б) , , получаем ряд , который сходится
условно. Таким образом, область сходимости: , .
Ответ: область сходимости .
Пример 3. Ряд расходится для всех , так как при , радиус сходимости .
Пример 4. Ряд сходится при всех R, радиус сходимости .
Функциональные ряды. Степенные ряды.
Область сходимости ряда
Смех без причины – признак Даламбера
Вот и пробил час функциональных рядов. Для успешного освоения темы, и, в частности, этого урока, нужно хорошо разбираться в обычных числовых рядах. Следует хорошо понимать, что такое ряд, уметь применять признаки сравнения для исследования ряда на сходимость. Таким образом, если Вы только-только приступили к изучению темы или являетесь чайником в высшей математике, необходимо последовательно проработать три урока: Ряды для чайников , Признак Даламбера. Признаки Коши и Знакочередующиеся ряды. Признак Лейбница . Обязательно все три! Если есть элементарные знания и навыки решения задач с числовыми рядами, то справиться с функциональными рядами будет довольно просто, поскольку нового материала не очень и много.
На данном уроке мы рассмотрим понятие функционального ряда (что это вообще такое), познакомимся со степенными рядами, которые встречаются в 90% практических заданий, и научимся решать распространенную типовую задачу на нахождение радиуса сходимости, интервала сходимости и области сходимости степенного ряда. Далее рекомендую рассмотреть материал о разложении функций в степенные ряды , и «скорая помощь» начинающему будет оказана. Немного отдышавшись, переходим на следующий уровень:
Также в разделе функциональных рядов есть их многочисленные приложения к приближённым вычислениям , и некоторым особняком идут Ряды Фурье , которым в учебной литературе, как правило, выделяется отдельная глава. У меня всего лишь одна статья, но зато длиннющая и много-много дополнительных примеров!
Итак, ориентиры расставлены, поехали:
Понятие функционального ряда и степенного ряда
Если в пределе получается бесконечность , то алгоритм решения также заканчивает свою работу, и мы даём окончательный ответ задания: «Ряд сходится при » (или при либо »). Смотрите случай №3 предыдущего параграфа.
Если в пределе получается не ноль и не бесконечность , то у нас самый распространенный на практике случай №1 – ряд сходится на некотором интервале.
В данном случае предел равен . Как найти интервал сходимости ряда? Составляем неравенство:
В ЛЮБОМ задании данного типа в левой части неравенства должен находиться результат вычисления предела , а в правой части неравенства – строго единица . Не буду объяснять, почему именно такое неравенство и почему справа единица. Уроки носят практическую направленность, и уже очень хорошо, что от моих рассказов не повесился профессорско-преподавательский состав стали понятнее некоторые теоремы.
Техника работы с модулем и решения двойных неравенств подробно рассматривалась на первом курсе в статье Область определения функции , но для удобства я постараюсь максимально подробно закомментировать все действия. Раскрываем неравенство с модулем по школьному правилу . В данном случае:
Половина пути позади.
На втором этапе необходимо исследовать сходимость ряда на концах найденного интервала.
Сначала берём левый конец интервала и подставляем его в наш степенной ряд :
При
Получен числовой ряд, и нам нужно исследовать его на сходимость (уже знакомая из предыдущих уроков задача).
1) Ряд является знакочередующимся.
2) – члены ряда убывают по модулю. При этом каждый следующий член ряда по модулю меньше предыдущего: , значит, убывание монотонно.
Вывод: ряд сходится.
С помощью ряда, составленного из модулей, выясним, как именно:
– сходится («эталонный» ряд из семейства обобщенного гармонического ряда).
Таким образом, полученный числовой ряд сходится абсолютно .
при – сходится.
! Напоминаю , что любой сходящийся положительный ряд тоже является абсолютно сходящимся.
Таким образом, степенной ряд сходится, причём абсолютно, на обоих концах найденного интервала.
Ответ: область сходимости исследуемого степенного ряда:
Имеет право на жизнь и другое оформление ответа: Ряд сходится, если
Иногда в условии задачи требуют указать радиус сходимости. Очевидно, что в рассмотренном примере .
Пример 2
Найти область сходимости степенного ряда
Решение: интервал сходимости ряда найдём с помощью признака Даламбера (но не ПО признаку! – для функциональных рядов такого признака не существует) :
Ряд сходится при
Слева
нам нужно оставить только
, поэтому умножаем обе части неравенства на 3:
– Ряд является знакочередующимся.
– – члены ряда убывают по модулю. Каждый следующий член ряда по модулю меньше предыдущего: , значит, убывание монотонно.
Вывод: ряд сходится.
Исследуем его на характер сходимости:
Сравним данный ряд с расходящимся рядом .
Используем предельный признак сравнения :
Получено конечное число, отличное от нуля, значит, ряд расходится вместе с рядом .
Таким образом, ряд сходится условно .
2) При – расходится (по доказанному).
Ответ: Область сходимости исследуемого степенного ряда: . При ряд сходится условно.
В рассмотренном примере областью сходимости степенного ряда является полуинтервал, причем во всех точках интервала степенной ряд сходится абсолютно , а в точке , как выяснилось – условно .
Пример 3
Найти интервал сходимости степенного ряда и исследовать его сходимость на концах найденного интервала
Это пример для самостоятельного решения.
Рассмотрим пару примеров, которые встречаются редко, но встречаются.
Пример 4
Найти область сходимости ряда:
Решение:
с помощью признака Даламбера найдем интервал сходимости данного ряда:
(1) Составляем отношение следующего члена ряда к предыдущему.
(2) Избавляемся от четырехэтажности дроби.
(3) Кубы и по правилу действий со степенями подводим под единую степень. В числителе хитро раскладываем степень , т.е. раскладываем таким образом, чтобы на следующем шаге сократить дробь на . Факториалы расписываем подробно.
(4) Под кубом почленно делим числитель на знаменатель, указывая, что . В дроби сокращаем всё, что можно сократить. Множитель выносим за знак предела, его можно вынести, поскольку в нём нет ничего, зависящего от «динамической» переменной «эн». Обратите внимание, что знак модуля не нарисован – по той причине, что принимает неотрицательные значения при любом «икс».
В пределе получен ноль, а значит, можно давать окончательный ответ:
Ответ: Ряд сходится при
А сначала-то казалось, что этот ряд со «страшной начинкой» будет трудно решить. Ноль или бесконечность в пределе – почти подарок, ведь решение заметно сокращается!
Пример 5
Найти область сходимости ряда
Это пример для самостоятельного решения. Будьте внимательны;-) Полное решение ответ в конце урока.
Рассмотрим еще несколько примеров, содержащих элемент новизны в плане использования технических приемов.
Пример 6
Найти интервал сходимости ряда и исследовать его сходимость на концах найденного интервала
Решение: В общий член степенного ряда входит множитель , обеспечивающий знакочередование. Алгоритм решения полностью сохраняется, но при составлении предела мы игнорируем (не пишем) этот множитель, поскольку модуль уничтожает все «минусы».
Интервал сходимости ряда найдём с помощью признака Даламбера:
Составляем стандартное неравенство:
Ряд сходится при
Слева
нам нужно оставить только модуль
, поэтому умножаем обе части неравенства на 5:
Теперь раскрываем модуль уже знакомым способом:
В середине двойного неравенства нужно оставить только «икс», в этих целях из каждой части неравенства вычитаем 2:
– интервал сходимости исследуемого степенного ряда.
Исследуем сходимость ряда на концах найденного интервала:
1) Подставляем значение в наш степенной ряд :
Будьте предельно внимательны, множитель не обеспечивает знакочередование, при любом натуральном «эн» . Полученный минус выносим за пределы ряда и забываем про него, поскольку он (как и любая константа-множитель) никак не влияет на сходимость или расходимость числового ряда.
Еще раз заметьте , что в ходе подстановки значения в общий член степенного ряда у нас сократился множитель . Если бы этого не произошло, то это бы значило, что мы либо неверно вычислили предел, либо неправильно раскрыли модуль.
Итак, требуется исследовать на сходимость числовой ряд . Здесь проще всего использовать предельный признак сравнения и сравнить данный ряд с расходящимся гармоническим рядом. Но, если честно, предельный признак сравнения до ужаса мне надоел, поэтому внесу некоторое разнообразие в решение.
Итак, ряд сходится при
Умножаем обе части неравенства на 9:
Извлекаем из обеих частей корень, при этом помним старый школьный прикол :
Раскрываем модуль:
и прибавляем ко всем частям единицу:
– интервал сходимости исследуемого степенного ряда.
Исследуем сходимость степенного ряда на концах найденного интервала:
1) Если , то получается следующий числовой ряд:
Множитель бесследно пропал, поскольку при любом натуральном значении «эн» .
Область сходимости Функциональным рядом называется ряд членами которого являются функции / определенные на некотором множестве Е числовой оси. Например, члены ряда определены на интервале, а члены ряда определены на отрезке Функциональный ряд (1) называется сходящимся в точке Хо € Е, если сходится ФУНКЦИОНАЛЬНЫЕ РЯДЫ Область сходимости Равномерная сходимость Признак Вейерштрасса Свойства равномерно сходящихся функциональных рядов числовой ряд Если ряд (1) сходится в каждой точке х множества D С Е и расходится в каждой точке, множеству D не принадлежащей, то говорят, что ряд сходится на множестве D, и называют D областью сходимости ряда. Ряд (1) называется абсолютно сходящимся на множестве D, если на этом множестве сходится ряд В случае сходимости ряда (1) на множестве D его сумма S будет являться функцией, определенной на D, Область сходимости некоторых функциональных рядов можно найти с помощью известных достаточных признаков, установленных для рядов с положительными членами, например, признака Дапамбера, признака Коши. Пример 1. Найти область сходимости ряда М Так как числовой ряд сходится при р > 1 и расходится при р ^ 1, то, полагая р - Igx, получим данный ряд. который будет сходиться при Igx > Ц т.е. если х > 10, и расходиться при Igx ^ 1, т.е. при 0 < х ^ 10. Таким образом, областью сходимости ряда является луч Пример 2. Найти область сходимости ряда 4 Рассмотрим ряд Члены этого ряда положительны при всех значениях х. Применим к нему признак Даламбера. Имеем пе При ех < 1. т.е. при, этот ряд будет сходиться. Следовательно, заданный ряд сходится абсолютно на интервале При х > 0 ряд расходится, так как Л =. Расходимость ряда при х = 0 очевидна. Пример 3. Нейти область сходимости ряда Члены данного ряда определены и непрерывны на множестве. Применяя признак Кош и, найдем для любого. Следовательно, ряд расходится при всех значениях х. Обозначим через Sn(x) n-ю частичную сумму функционального ряда (1). Если этот ряд сходится на множестве D и его сумма равна 5(ж), то ее можно представить в виде где есть сумма сходящегося на множестве D ряда который называется п-м остатком функционального ряда (1). Для всех значений х € D имеет место соотношение и поэтому. т. е. остаток Rn(x) сходящегося ряда стремится к нулю при п оо, каково бы ни было х 6 D. Равномерная сходимость Среди всех сходящихся функциональных рядов важную роль играют так называемые равномерно сходящиеся ряды. Пусть дан сходящийся на множестве D функциональный ряд сумма которого равна S(x). Возьмем его n-ю частичную сумму Определение. Функциональный ряд ФУНКЦИОНАЛЬНЫЕ РЯДЫ Область сходимости Равномерная сходимость Признак Вейерштрасса Свойства равномерно сходящихся функциональных рядов называется равномерно сходящимся на множестве ПС1), если для любого числа е > О найдется число ЛГ > О такое, что неравенство будет выполняться для всех номеров п > N и для всех х из множества fI. Замечание. Здесь число N является одним и тем же для всех х € Ю, т.е. не зависит от z, однако зависит от выбора числа е, так что пишут N = N(e). Равномерную сходимость функционального ряда £ /п(®) к функции 5(х) на множестве ft часто обозначают так: Определение равномерной сходимости ряда /п(ж) на множестве ft можно за- писать короче с помощью логических символов: Поясним геометрически смысл равномерной сходимости функционального ряда. Возьмем в качестве множества ft отрезок [а, 6] и построим графики функций. Неравенство |, выполняющееся для номеров п> N и для всех a; G [а, Ь], можно записать в следующем виде Полученные неравенства показывают, что графики всех функций у = 5„(ж) с номерами п > N будут целиком заключены внутри £-полосы, ограниченной кривыми у = S(x) - е и у = 5(ж) + е (рис. 1). Пример 1 равномерно сходится на отрезке Данный ряд является знакочередующимся, удовлетворяет условиям признака Лейбница при всяком х € [-1,1] и, следовательно, сходится на отрезке (-1,1]. Пусть S(x) - его сумма, a Sn(x) - его п-я частичная сумма. Остаток ряда по абсолютной величине не превосходит абсолютной величины своего первого члена: а поскольку Возьмем любое е. Тогда неравенство | будет выполняться, если. Отсюда находим, что п > \. Если взять число (здесь через [а] обозначено наибольшее целое число, не превосходящее а), то неравенство | е будет выполняться для всех номеров п > N и для всех х € [-1,1). Это означает, что данный ряд равномерно сходится на отрезке [-1,1). I. Не всякий сходящийся на множестве D функциональный ряд является равномерно сходящимся на Пример 2. Покажем, что ряд сходится на отрезке, но не равномерно. 4 Вычислим п-ю частичную сумму £„(*) ряда. Имеем Откуда Данный ряд сходится на отрезке и его сумма если Абсолютная величина разности S(x) - 5„(х) (остатка ряда) равна. Возьмем число е такое, что. Пусть Разрешим неравенство относительно п. Имеем, откуда (так как, и при делении на Inx знак неравенства меняется на обратный). Неравенство будет выполняться при. Поэтому такого не зависящего от х числа N(e), чтобы неравенство выполнялось для каждого) сразу для всех х из отрезка. , не существует. Если же заменить отрезок 0 меньшим отрезком, где, то на последнем данный ряд будет сходиться к функции S0 равномерно. В самом деле, при, и поэтому при сразу для всех х §3. Признак Вейерштрасса Достаточный признак равномерной сходимости функционального ряда дается теоремой Вейерштрасса. Теорема 1 (признак Вейерштрасса). Пусть для всех х из множества Q члены функционального ряда по абсолютной величине не превосходят соответствующих членов сходящегося числового ряда П=1 с положительными членами, т. е. для всех х € Q. Тогда функциональный ряд (1) на множестве П сходится абсолютно и равномерно. А Тек как по условию теоремы члены ряда (1) удовлетворяют условию (3) на всем множестве Q, то по признаку сравнения ряд 2 \fn(x)\ сходится при любом х € И, и, следовательно, ряд (1) сходится на П абсолютно. Докажем равномерную сходимость ряда (1). Пусть Обозначим через Sn(x) и an частичные суммы рядов (1) и (2) соответственно. Имеем Возьмем любое (сколь угодно малое) число е > 0. Тогда из сходимости числового ряда (2) следует существование номера N = N(e) такого, что следовательно, -е для всех номеров п > N(e) и для всех хбП, т.е. ряд (1) сходится равномерно на множестве П. Замечание. Числовой ряд (2) часто называют мажорирующим, или мажорантным, для функционального ряда (1). Пример 1. Исследовать на равномерную сходимость ряд Неравенство выполняется для всех. и для всех. Числовой ряд сходится. В силу признака Вейерштрасса рассматриваемый функциональный ряд сходится абсолютно и равномерно на всей оси. Пример 2. Исследовать на равномерную сходимость ряд Члены ряда определены и непрерывны на отрезке [-2,2|. Так как на отрезке [-2,2) для любого натурального п, то Таким образом, неравенство выполняется для. Так как числовой ряд сходится, то по признаку Вейерштрасса исходный функциональный ряд сходится абсолютно и равномерно на отрезке. Замечание. Функциональный ряд (1) может сходится равномерно на множестве Пив том случае, когда не существует числового мажорантного ряда (2), т. е. признак Вейерштрасса яапяется лишь достаточным признаком для равномерной сходимости, но не является необходимым. Пример. Как было показано выше (пример), ряд равномерно сходится на отрезке 1-1,1]. Однако для него мажорантного сходящегося числового ряда (2) не существует. В самом деле, для всех натуральных п и для всех х € [-1,1) выполняется неравенство причем равенство достигается при. Поэтому члены искомого мажорантного ряда (2) непременно должны удовлетворять условию но числовой ряд ФУНКЦИОНАЛЬНЫЕ РЯДЫ Область сходимости Равномерная сходимость Признак Вейерштрасса Свойства равномерно сходящихся функциональных рядов расходится. Значит, будет расходиться и ряд £ оп. Свойства равномерно сходящихся функциональных рядов Равномерно сходящиеся функциональные ряды обладают рядом важных свойств. Теорема 2. Если все члены ряда равномерно сходящегося на отрезке [а, Ь], умножить на одну и ту же функцию д(х), ограниченную на [а, 6], то полученный функциональный ряд будет равномерно сходиться на. Пусть на отрезке [а, Ь\ ряд £ fn(x) равномерно сходится к функции 5(ж), а функ- ция д(х) ограничена, т. е. существует постоянная С > 0 такая, что По определению равномерной сходимости ряда для любого числа е > 0 существует номер N такой, что для всех п > N и для всех х € [а, Ь] будет выполняться неравенство где 5n(ar) - частичная сумма рассматриваемого ряда. Поэтому будем иметь и для любого. ряд равномерно сходится на [а, Ь| к функции Теорема 3. Пусть все члены fn(x) функционального ряда непрерывны и ряд сходится равномерно на отрезке [а, Ь\. Тогда сумма S(x) ряда непрерывна на этом отрезке. М Возьмем на отрезке [о, Ь] две произвольные точки гиг + Ах. Так как данный ряд сходится на отрезке [а, Ь] равномерно, то для любого числа е > О найдется номер N = N(e) такой, что для всех я > N будут выполняться неравенства где5„(ж) - частичные суммы ряда fn{x). Эти частичные суммы 5„(ж) непрерывны на отрезке [а, 6] как суммы конечного числа непрерывных на [а, 6) функций fn(x). Поэтому для фиксированного номера no > N(e) и взятого числа е найдется число 6 = 6(e) > 0 такое, что для приращения Ах, удовлетворяющего условию |, будет иметь место неравенство Приращение AS суммы S(x) можно представить в следующем виде: откуда. Учитывая неравенства (1) и (2), для приращений Ах, удовлетворяющих условию |, получим Это означает, что сумма Six) непрерывна в точке х. Так как х является произвольной точкой отрезка [а, 6], то 5(ж) непрерывна на |а, 6|. Замечание. Функциональный ряд члены которого непрерывны на отрезке [а, 6), но который сходится на (а, 6] неравномерно, может иметь суммой разрывную функцию. Пример 1. Рассмотрим функциональный ряд на отрезке |0,1). Вычислим его n-ю частичную сумму Поэтому Она разрывна на отрезке , хотя члены ряда непрерывны на нем. В силу доказанной теоремы данный ряд не является равномерно сходящимся на отрезке . Пример 2. Рассмотрим ряд Как было показано выше, этот ряд сходится при, ряд будет сходиться равномерно по признаку Вейерштрасса, так как 1 и числовой ряд сходится. Следовательно, для любого х > 1 сумма этого ряда непрерывна. Замечание. Функция называется функцией Рима на (эта функция играет большую роль в теории чисел). Теорема 4 (о почленном интегрировании функционального ряда). Пусть все члены fn(x) ряда непрерывны, и ряд сходится равномерно на отрезке [а, Ь] к функции S(x). Тогда справедливо равенство В силу непрерывности функций f„(x) и равномерной сходимости данного ряда на отрезке [а, 6] его сумма 5(ж) непрерывна и, следовательно, интегрируема на . Рассмотрим разность Из равномерной сходимости ряда на [о, Ь] следует, что для любого е > 0 найдется число N(e) > 0 такое, что для всех номеров п > N(e) и для всех х € [а, 6] будет выполняться неравенство Если ряд fn(0 не является равномерно сходящимся, то его, вообще говоря, нельзя почленно интегрировать, т. е. Теорема 5 (о почленном дифференцировании функционального ряда). Пусть все члены сходящегося ряда 00 имеют непрерывные производные и ряд составленный из этих производных, равномерно сходится на отрезке [а, Ь]. Тогда в любой точке справедливо равенство т. е. данный ряд можно почленно дифференцировать. М Положим Возьмем две любые точки. Тогда в силу теоремы 4 будем иметь Функция o-(x) непрерывна как сумма равномерно сходящегося ряда непрерывных функций. Поэтому, дифференцируя равенство получим Упражнения Найдите области сходимости данных функциональных рядов: Пользуясь признаком Вейерштрасса, докажите равномерную сходимость данных функциональных рядов на указанных интервалах: